Supporting Information

Self-Reconstructed (Oxy)hydroxide@Nanoporous Metal Phosphides Electrode for High-Performance Rechargeable Zinc Batteries

Yao Jiang^{a,1}, Ming Peng^{a, 1}, Jiao Lan^a, Yang Zhao^a, Ying-Rui Lu^b, Ting-Shan Chan^b, Ji Liu^a, Yongwen Tan^a*

^aCollege of Materials Science and Engineering, Hunan University, Hunan;

^bNational Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.

Corresponding Author

*Email: tanyw@hnu.edu.cn

¹These authors contributed equally to this work.

Figure S1. Schematic illustration of the preparation process of self-reconstructed (oxy)hydroxide@nanoporous metal phosphides.

Figure S2. The binary Ni-P phase diagram (Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, 1990, 3, 2833-2837.). The percentage of P present and the temperature define the phase of the alloy. When the proportion of P to total alloy is 10%, the phase composition is Ni and Ni₃P after cooling.

Figure S3. HRTEM image of $Ni_{90}P_{10}$ ribbon, showing Ni phase and Ni_3P phase with different interplanar distance.

Figure S4. (a) HAADF image of Ni₉₀P₁₀ ribbon. The marked box is the region selected for EDS chemical analysis. (b, c) STEM EDS element mappings taken from the marked region in (a). (d) Selected area electron diffraction (SAED) of Ni₉₀P₁₀ ribbons. The ring-like diffraction pattern indicates the fine nanostructures of both Ni (red arrows) and Ni₃P (blue arrows) phases.

Figure S5. The linear sweep voltammetry curve of the $Ni_{90}P_{10}$ ribbons in 0.1 M HCl. The two distinct peaks at 0.45 V and 1.1 V (vs. Ag/AgCl) correspond to corrosion of Ni and Ni_3P , respectively. The potential of 0.1 V (vs. Ag/AgCl) is suitable for the selective corrosion of Ni

phase for self-standing np-Ni $_3$ P. Because the potential could well avoid the corrosion of Ni $_3$ P and keep essential corrosion current for time-consuming preparation.

Figure S6. Typical corrosion curve of $Ni_{90}P_{10}$ ribbon in 0.1 M HCl at 0.1 V vs Ag/AgCl.

Figure S7. XRD pattern of initial $Ni_{90}P_{10}$ ribbon and np- Ni_3P . Insert is the optical image of the $Ni_{90}P_{10}$ ribbon (a) and np- Ni_3P (b), respectively.

Figure S8. SEM images of np-Ni₃P prepared at the rotating speed of 1 K (a), 3 K (b) and 5 K (c). The pore size is (226 ± 26) , (100 ± 28) and (42 ± 9) nm, respectively. (d) The cross section of the 5 K sample.

Figure S9. (a) The adsorption-desorption isotherm plot of np-Ni₃P prepared at different rotating speeds (1, 3 and 5 K) and (b) corresponding pore volume accumulation. According to the adsorption-desorption isotherm plot of np-Ni₃P prepared at 1, 3 and 5 K and their pore size distribution, the BET specific surface area of np-Ni₃P is 10.22, 26.48 and 40.09 m² g⁻¹ with a total pore volume of 0.039, 0.089 and 0.137 cm³ g⁻¹, respectively.

Figure S10. (a) HAADF-STEM image of np-Ni₃P prepared at 3 K rpm; (b) HRTEM image showing the lattice fringes of crystalline Ni₃P ligaments. Inset: the fast Fourier transformed (FFT) pattern; (c) The SAED pattern of np-Ni₃P.

Figure S11. CV curves for activation of np-Ni₃P by cycling within 0-0.8 V bias (vs Ag/AgCl) at 0.05 V s⁻¹ in 1 M NaOH containing 0.02 M Zn(CH₃COO)₂. The redox peaks remain symmetry during activation, showing good reaction reversibility. The peak intensity increases and peak positions shift outward due to the increasing amount of nickel (oxy)hydroxide. After 150 cycles, the CV curves do not show much change until 200 cycles.

Figure S12. XRD pattern of np-Ni₃P and np-Ni₃P with different activation cycle(s).

and 20 (b) mA/cm². The (oxy)hydroxide@np-Ni₃P electrode is prepared at 1 K, 3 K and 5 K,

respectively. As a comparison, the capacities follow the order: $3 \times 5 \times 1 \times 1 \times 1 \times 10^{-3}$ the as prepared np-Ni₃P at 1 K, 3 K and 5 K rpm is 1.1, 2.4 and 1.8 g cm⁻³, respectively.

Figure S14. CV curves of the (oxy)hydroxide@np-Ni₃P/Zn battery with different scan rates.

Figure S15. Voltage efficiencies and energy efficiencies with chargingdischarging densities from 5 mA cm^{-2} to 100 mA cm^{-2} . The voltage

efficiencies of 80.0-94.3% and energy efficiencies of 79.2-90.7% are achieved.

Figure S16. Over charging-discharging curves of the (oxy)hydroxide@np-Ni₃P/Zn battery with different densities.

Figure S17. Electrochemical impedance spectroscopy spectra of the (oxy)hydroxide@np-Ni₃P/Zn battery. The spectra composed of an arc line in the high frequency region and an

oblique line in low frequency region was analyzed with an equivalent circuit model containing the series resistance (R_s), the interface capacity (C_{dl}) the charge transfer resistance (R_{ct}) and the Warberg impedance (Z_w), respectively. The small R_{ct} (0.12 Ω cm²) implied a fast charge transfer at the interface of the electrolyte and electrode, indicating the amorphous layer is beneficial for interface charge transfer and the ion diffusion in the 3D channels could retain the electrochemical reaction.

Figure S18. Cross section of the (oxy)hydroxide@np-Ni₃P electrode after 6000 charging/discharging cycles at 50 mA/cm².

Figure S19. The long-term cycling performance of the Zn battery at 20 mA/cm² based on np-

Ni₃P without activation.

Figure S20. (a) Four periods in the charging and discharging process at 20 mA/cm². 1: charged, 2: fully charged, 3: discharged, 4: fully discharged. (b) XRD spectra of the (oxy)hydroxide@np-Ni₃P electrode at four periods. The spectra showed the crystal Ni₃P and no significant change was observed in the four states, confirming Ni₃P is stable as the stable conductive framework.

Figure S21. XPS spectra of Ni 2p of the electrode after charging and discharging at 20 mA/cm². The area ratio of the peak at 856.9 eV to the peak at 855.6 eV for Ni $2p_{3/2}$ (I₁) and the area ratio of the peak at 874.7 eV to the peak at 873.2 eV for Ni $2p_{1/2}$ (I₂) are used to evaluate the relative ratio of NiOOH/Ni(OH)₂. As shown in **Table S5**, I₁ and I₂ decreased, revealing the reduction from NiOOH to Ni(OH)₂.

Figure S22. Electrochemical performances of the symmetry supercapacitor based on (oxy)hydroxide@np-Ni₃P electrode.

Figure S23. Electrochemical performances of np-Co₂P/Zn battery. (a) Charging/ discharging curves, (b) Nyquist plot, and (c) Cycling performance of the battery. The preparation of np-Co₂P followed similar procedure with np-Ni₃P, but the element composition for ingot was Co:P = 85:15.

	Ni 2p _{3/2}			Ni 2p _{1/2}		
	S1@ 857.2 eV (NiOOH)	S2@ 855.6 eV [Ni(OH)₂]	ا (S1/S2)	S3@ 875.1 eV (NiOOH)	S4@ 873.3 eV [Ni(OH)₂]	l ₂ (S3/S4)
Initial	129.7	7305.1	0.017	248.3	4333.6	0.057
1 CV	5960.2	21574.2	0.276	1774.2	12195.8	0.145
200 CVs	12897.7	23714.7	0.543	5535.5	13352.2	0.414

Table S1 The area ratio of the Ni 2p peaks in np-Ni₃P with various activation cycle(s)

Electrode	1	2	3	4	Average
np-Ni ₃ P	476.2	476.2	476.2	476.2	476.2
(oxy)hydroxide@np-Ni₃P	333.3	434.8	434.8	333.3	384.0

Table S2 Electrical conductivity of np-Ni $_3$ P and activated np-Ni $_3$ P (S cm⁻¹)

Table S3 The energy density and power density of the battery

Current density	5	10	20	50	100
(mA cm ⁻²)					
Energy density	15.38	14.97	14.48	13.74	12.69
(mW h cm⁻³)					
Energy density	2.47	2.40	2.32	2.21	2.04
(mW h g⁻¹)		-	-		-
Power density	224.36	445.89	883.84	2141.79	4153.54
(mW cm⁻³)					
Power density	35.99	71.52	141.76	343.53	666.20
(mW g ⁻¹)		- = ···			

Table S4 The energy density and power density of reported energy storage devices

	Energy density (mW h cm ⁻³)	Power density (mW cm ⁻³)	Reference
(Oxy)hydroxide@np- Ni ₃ P//Zn	15.38	4153.55	This work
Zn//MnO ₂	12.00	13.00	Small, 2018, 14, 1802320.
NiO//A-Bi	11.10	90.00	J. Mater. Chem. A, 2018, 6, 8895-8900.
NiCo//Zn	8.00	2200.00	ACS Nano, 2017, 11, 8953-8961.

CC-CF@NiO//CC- CF@ZnO	7.76	210.00	Adv. Mater., 2016, 28, 8732- 8739.
Ni//Fe	5.20	640.00	Adv. Energy Mater., 2016, 6, 1601034.
Co//Zn	4.60	420.00	Adv. Funct. Mater., 2018, 28, 1802016.
Co₃O₄@NiO//Zn	2.10	82.20	Inorg. Chem. Front., 2015, 2, 184-187.
CNTs//Fe ₃ O ₄ -C	1.20	29.00	Adv. Funct. Mater., 2015, 25, 5384-5394.
Na-ion battery	1.30	70.00	Adv. Funct. Mater., 2016, 26, 3703-3710.
Fiber-Shaped Ni//Zn	0.67	220.00	Adv. Mater., 2017, 29, 1702698.
VO _x //VN-ASC	0.61	850.00	Nano Lett., 2013, 13, 2628-2633.
VT/CNT	0.54	400.00	Adv. Mater., 2013, 25, 5091- 5097.
$MnO_2//Fe_2O_3$	0.32	139.10	Nano Lett., 2014, 14, 731-736.
Graphene//Co ₃ O ₄	0.40	1200.00	Angew. Chem. Int. Ed., 2014, 53, 1849-1853.

Table S5 The area ratio of the Ni 2p peaks after charging and discharging

_

	Ni 2p _{3/2}			Ni 2p _{1/2}		
	S1@ 856.9 eV (NiOOH)	S2@ 855.6 eV [Ni(OH)₂]	l ₁ (S1/S2)	S3@ 874.7 eV (NiOOH)	S4@ 873.2eV [Ni(OH) ₂]	I ₂ (S3/S4)
After charging	27442.1	120377.1	0.227	16916.3	43990.1	0.384
After discharging	12533.4	59611.9	0.210	8186.8	21600.6	0.379