Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Fig. S1. SEM images of the samples before and after the annealing process. (a) As-deposited WO₃, (b) Air-WO₃, (c) Ar-WO₃ and (d) H₂-WO₃.

X-ray diffraction (XRD) and Raman spectroscopy

The growth of WS₂ from WO₃ NHs by the sulfurization was confirmed by X-ray diffraction (XRD) and Raman spectroscopy. As shown in Fig. S2a, the characteristic XRD peaks of WS₂ (JCPDS #08-0237) appear near 14 ° after the sulfurization together with the peaks from WO₃ (JCPDS #43-1035) and W foil. Raman spectroscopy was also performed to identify the characteristics of the WS₂ grown on three samples as shown in Fig. S2b. All the samples show characteristic Raman scattering peaks of WS₂ A_{1g} at 420 cm⁻¹ representing the out-of-plane W-S phonon mode and E_{2g}^1 at 354 cm⁻¹ for the in-plane W-S phonon mode,¹ confirming the formation of WS₂ by the sulfurization.

Fig. S2. Material characterization of fabricated WS_2/WO_3 samples. (a) XRD patterns and (b) Raman spectra of each sample (Air, Ar and H_2-WS_2)

Fig. S3. Conductive atomic force microscopy (CAFM) results of (a) – (c) Air-WO₃ and (d) – (f) H_2 -WO₃ (a) and (d) show the conductivity mapping. (b) and (e) show the I-V curve. (c) and (f) show the surface morphology of the samples. The H_2 -WO₃ shows much higher conductivity compared with the Air-WO₃.

DFT calculation

First-principles density functional theory (DFT) calculations were performed to understand how the annealing in H₂ atmosphere change the growth behavior of WS₂ on WO₃ surface during the sulfurization. Based on the DFT calculations, the (100) plane with $(\sqrt{2} \times \sqrt{2})$ R45° surface reconstruction is identified as the most energetically favorable surface termination of the WO₃ slab as shown in Fig. 3a.^{2,3} The surface structure is constructed by $2\sqrt{2} \times 2\sqrt{2}$ supercell with 8 atoms so that 4 W ions and 4 O ions are placed on the surface. Since strong adsorption of disulfur (S2) molecule can expedite the sulfurization of the WO3 surface, the binding energy of S2 molecule on the WO3 surface was investigated. Since the surface oxygen ions can be reduced by hydrogen annealing, we additionally created reduced surface to reflect the oxygen deficient condition in which the half of the oxygen ions are removed from the surface. Fig. 3a and b show the schematic views of normal and reduced structure of WO₃ surface. Our DFT calculations predict that the binding of S_2 molecule is significantly enhanced on the reduced surface; the binding energy is increased from 0.505 eV (normal) to 1.066 eV (reduced) as shown in the Fig. 1e and 1f. The charge density distribution of S_2 molecule on two different surfaces was further investigated in order to understand the physical origin of the enhanced binding of S₂ on the reduced surface. As can be seen from Fig. 3e, S2 molecule is weakly adsorbed on WO3 surface because of steric hindrance of dense dangling oxygen. On the other hand, S_2 molecule binds strongly with two W ions and form a bridge shape configuration on the reduced surface, as shown in Fig. 3f. As a result, S₂ molecule binds more strongly with reduced WO₃ surface. The enhanced binding of S₂ molecule on the reduced surface is reasonable since electronegative S₂ molecule should prefer the reduced surface. Note that this growth mechanism can be applied to other experimental studies such as space-confined growth of MoS₂⁴ or hierarchically nanostructured MoS₂⁵. Based on the DFT calculation, the oxygen deficiency induced by the annealing in H₂ atmosphere can facilitate the nucleation, and accelerate the growth of WS₂ and thus sporadic and thick WS₂ layer is observed for the H₂-WS₂ sample, causing the formation of a rich edge-exposed WS₂.

System	Surface reaction	Energy (eV)	Adsorption (eV)	Note
S ₂		-7.100		Spin-polarization
Normal		-613.894		
S_2 - W_N	$S_2 + Normal \rightarrow S_2 - W_N$	-621.500	-0.505	Steric hindrance
Reduced		-600.547		
S_2-W_R	$S_2 + Reduced \rightarrow S_2 - W_R$	-608.712	-1.065	Bridge binding
$S_2-W_R^*$	$S_2 + Reduced \rightarrow S_2 - W_R^*$	-608.713	-1.066	Bridge binding

Table S1. Calculated energies for each system with the S_2 adsorption

 S_2 is a disulfide system which magnetization is $2\mu_B$, Normal and Reduced are symmetric slab models of normal and reduced surface state, and the energy is half value of full system. S_2 - W_N is adsorption system from normal surface state. S_2 - W_R and S_2 - W_R^* are adsorption systems from reduced surface state with 'same' and 'different' adsorption site of S_2 - W_N .

Fig. S4. TEM images and elemental mapping of O, S and W collected by EDS analysis from Air-WS₂ sample. Average atomic percent collected from three red dots in TEM images is summarized in Table S2.

Fig. S5. TEM images and elemental mapping of O, S and W collected by EDS analysis from H_2 -WS₂ sample. Average atomic percent collected from three red dots in TEM images is summarized in Table S2.

Table S2. Average atomic percent of O, S and W collected from Air-WS₂ and H_2 -WS₂. Three red dots in each TEM images show the spot where the spectrum was collected

Flomonte	Air-WS ₂	H_2 -WS ₂	
Elements	(Average atomic %)	(Average atomic %)	
O K	50.53	32.36	
S K	2.48	28.33	
W L	46.98	39.31	

Fig. S6. S2p XPS spectra from the samples of Air-WS₂, Ar-WS₂ and H_2 -WS₂.

Fig. S7. W4f XPS spectra of the H_2 -WS₂ sample deconvoluted into 1T and 2H phase WS₂.

Fig. S8. Atomic unit cell structure model used for HREM simulation. (a) 1T phase WS₂ and (b) 2H phase WS₂ with various perspective view.^{6–8}

Crystallographic information file (CIF) of the 1T-WS₂.^{6,7}

Generated by 'Crystal Maker'				
Unit cell_a = 3.21 Å				
Unit cell_b = 3.21 Å				
Unit cell_c = 6.18 Å				
Unit cell_ $\alpha = 90^{\circ}$				
Unit cell_ $\beta = 90^{\circ}$				
Unit cell_ $\gamma = 120^{\circ}$				
Space group = $P - 3 m 1$				
Atomic position (x, y, z)				
S1 0.833300	0.166700	0.875000		
S1 0.166700	0.833300	0.125000		
S1 0.166700	0.833300	0.625000		
S1 0.833300	0.166700	0.375000		
W1 0.500000	0.500000	0.750000		
W1 0.500000	0.500000	0.250000		

CIF file of the 2H-WS₂.^{6,8}

We use the Material Project database for CIF of 2H phase WS_2 (mp-224)

https://materialsproject.org/

Fig. S9. HREM simulation mapping results for (a) 1T phase and (b) 2H phase WS_2 by changing the defocusing and thickness. *y* axis for each data means the thickness change (a) from 5.46 nm to 24.72 nm and (b) from 42.38 nm to 61.64 nm with 3.21 nm interval. *x* axis means the change in the defocusing (a) from 28.4 nm to 58.4 nm and (b) from 38.4 nm to 68.4 nm with 5 nm interval. Red dotted square denotes the simulation data that coincide with experimental data. Scherzer defocus is 43.4 nm.

Strain caused by 3D scaffold WO₃

For investigating the effect of curved 3D WO₃ scaffold, WO₃ film structure with 1 μ m thickness was fabricated followed by H₂ annealing and sulfurization using the same fabrication condition of H₂-WS₂, denoted as H₂-WS₂ (TF) (Fig. S10a and S10b). As implied in the XRD data (Fig. S10c), WS₂/WO₃ was successfully fabricated. The W4f binding energies of WS₂ in each sample (H₂-WS₂ and H₂-WS₂ (TF)) were compared in the XPS data (Fig. S10d). As shown in the XPS data, WS₂ in the NH system shows lower binding energy compared to WS₂ in the film system, which implies that the curvature-induced strain from curved 3D NH affects to the bonding state of WS₂.

Furthermore, difference in the thermal expansion coefficient (TEC) between WO₃ and WS₂ induces the thermal strain on the WS₂ during the cooling after the CVD growth. It was previously studied that the TEC difference between substrate and TMDCs causes the strain and even induce the phase transition during the CVD process.^{9–11} According to the previous reports, TEC difference of WS₂ ($6.5 \cdot 10^{-6} \text{ K}^{-1}$) and WO₃ ($11 \sim 13 \cdot 10^{-6} \text{ K}^{-1}$) is enough to activate the phase transition.^{11,12} The result of XPS and HRTEM data, which is well-known method to identify the two polymorphs (2H and 1T) of TMDCs, shows the characteristics of 1T phase WS₂ by exhibiting binding energies at 32.2 and 34.3 eV.

	WO ₃	2H phase WS ₂	1T phase WS ₂
a (Å)	7.309	3.18	3.21
b (Å)	7.522	3.18	3.21
c (Å)	7.678	12.27	6.18
α (°)	88.81	90	90
β (°)	90.92	90	90
γ (°)	90.93	120	120

Table S3. Lattice parameters of $WS_2^{7,8,13}$ and WO_3 (JCPDS #43-1035).

Fig. S10. (a), (b) SEM images of 1 μ m thick sulfurized thin film WS₂/WO₃ (H₂-WS₂ (TF)) on W foil. (c) XRD patterns of H₂-WS₂ (TF) and (d) normalized XPS spectra of W4f comparing H₂-WS₂ NH and H₂-WS₂ thin film system. The binding energy of NH is lower than the thin film.

Fig. S11. The TEM images of (a), (b) Air-WS₂ and (c), (d) H_2 -WS₂. Red arrows show the exposed edge by the distorted and defective site of TMDC manifested at the curved surface

Faradaic efficiency and XPS analysis after the stability test

Additional XPS analysis was carried out for the H_2 -WS₂ sample after the stability test. As shown in Fig. S12, W4f and S2p peak intensity from WS₂ is reduced compared to those from the pristine H_2 -WS₂ sample. On the other hand, a new peak, indexed as S2p from (SO₄)²⁻ bonding¹⁴, appeared after the stability test, which is attributed to the formation of electrochemical reaction product between the electrode and the electrolyte. It is believed that the surface of the sample is partially oxidized¹⁵ and/or covered by the reaction product after taking it out from the electrolyte after the stability test, resulting in reduced peak intensity from WS₂. Note that XPS is a surface sensitive characterization tool due to very low photoelectron escape depth. Nevertheless, HER activity is maintained after the stability test. In addition, faradaic efficiency (FE) for hydrogen from the HER was analyzed with the H₂-WS₂ sample after the stability test, showing the 96% of FE at -0.168 V_{RHE}. (Details of experiment for FE are explained in Fig. S14)"

Fig. S12. XPS spectra of the sample after stability test. (a) W4f spectra and (b) S2p spectra

Tafel slope

We have tried to obtain the Tafel slopes from the polarization curves of the three electrodes shown in Fig. S13. However, a significant additional reduction current before the onset potential was observed as shown in Fig. S13b, which makes it difficult to evaluate the Tafel slopes as well as onset potentials accurately. As shown in Fig. S13c, the Tafel slopes obtained from the polarization curves are abnormally high compared to previously reported values due to such additional reduction currents that can be associated with electrochromic reaction of WO₃ to form H_xWO_3 near - 0.1 V (vs. RHE) which overlaps with the onset potential region of our samples ($- 0.15 \sim - 0.05$ V vs. RHE).¹⁶

Fig. S13. (a) Polarization curves for HER and (b) magnified image adjacent to the onset potential of (a). (c) Tafel plots and slopes of the fabricated samples corresponding to the polarization curves.

Faradaic efficiency (FE) of HER

To evaluate the electrochemical catalytic ability to catalyze HER and exclude the effect of electrochromic reaction, the faradaic efficiency (FE) of HER was calculated. The electrochemical test was carried out in the H-type electrochemical cell and the produced hydrogen was analyzed with gas chromatography (GC, Agilent 7890B). The system consists of the H-type cell filled with the electrolyte, working electrode, counter electrode and reference electrode. The Ar is supplied to the cell as a carrier gas and carries the produced hydrogen to the GC.

The chronoamperometric measurements was carried out adjacent to the onset potential. After 20 min of the reaction, the concentration of produced hydrogen is analyzed with the GC. From the results, the FE was calculated using Equation (1). In equation (1), α represents the number of electrons transferred to produce H₂ (α = 2 in HER), *n* is the number of mole of produced H₂, *F* is Faraday's constant (96485 C/mol) and *Q* represents the total charge passed.^{17,18}

$$\alpha n F = \frac{Gas \text{ flow through cell} \times Concentration of Product}{Current at sampling time} \times 100$$
Faradaic efficiency = $Q = \frac{Q}{\alpha F}$
(1)

As shown in Fig. S14, the FE at $-0.168 V_{RHE}$ is nearly 90%, which implies that a small part of total current originates from the electrochromic reaction of WO₃. At $-0.2 V_{RHE}$, however, the FE of hydrogen is 96.4% indicating a negligible electrochromic reaction. As a result, it can be inferred that the electrochemical current in Fig. 5a originates from the H₂ production.

Fig. S14. Current density and faradaic efficiency obtained after 20 min of chronoamperometric measurements.

Fig. S15. Pictures of the electrochemical cell system with (a) front and (b) side view. (c) Picture of evolved hydrogen bubbles at the surface of working electrode ($-0.3 V_{RHE}$).

Samples	Onset potential [mV]	Tafel slope [mV/dec]	Overpotential (mV) at 10 mA/cm ²	R _{CT} [Ω]	Ref
Vertically aligned WS ₂	- 0.03	61	- 0.136	N/A	19)
Vertically oriented WS ₂	N/A	105	N/A	N/A	20)
Exfoliated WS ₂	~ - 0.12	~90	~ -0.4	N/A	21)
Microwave exfoliated WS ₂	- 0.075	70	- 0.142	5	22)
Exfoliated WS ₂	- 0.03~0.06	60	N/A	N/A	23)
Exfoliated-WS ₂	N/A	85	~ -0.035	N/A	24)
BuLi exfoliated WS ₂	- 0.31	~110	~ -0.7	N/A	25)
WS ₂ /P,N,O-graphene	N/A	52.7	- 0.125	6.5	26)
WS ₂ /rGO	$-0.15 \sim -0.2$	58	N/A	~200	27)
rGO/WS ₂	N/A	73	- 0.229	31.6	28)
$WS_{2(1-x)}P_{2x}$ nanoribbon	N/A	71	- 0.98	2.78	29)
H ₂ O quenched WS ₂ nanoribbon	- 0.15	68	- 0.225	38	30)
WS ₂ nanosheet	- 0.06	72	>-0.15	N/A	31)
WS ₂ nanosheet/nanodot	- 0.18	75	N/A	N/A	32)
N-doped WS ₂ nanosheet	- 0.86	82.55	N/A	39	33)
WS ₂ nanoflake	- 0.1	48	N/A	N/A	34)
Exfoliate WS ₂ nanodot	- 0.09	51	N/A	N/A	35)
$WS_{2(1-x)}Se_{2x}$ nanotube (x = 0.52)	N/A	e	N/A	204	36)
$WS_{2(1-x)}Se_{2x}$ nanoribbon	N/A	68	0.173	50	37)
Hierarchical WS ₂	32	60	0.157	N/A	38)
Edge exposed 1T-WS ₂	<-0.1	N/A	- 0.168	8	This work

 Table S4 Comparison of electrochemical performance for different samples

Reference

- Y. Yang, H. Fei, G. Ruan, Y. Li and J. M. Tour, *Adv. Funct. Mater.*, 2015, 25, 6199–6204.
- 2 C. Lambert-Mauriat, V. Oison, L. Saadi and K. Aguir, Surf. Sci., 2012, 606, 40–45.
- 3 R. E. Tanner and E. I. Altman, J. Vac. Sci. Technol. A, 2001, 19, 1502–1509.
- 4 X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang and S. Yang, *Chem. Mater.*, 2014, **26**, 2344–2353.
- H. Huang, L. Chen, C. Liu, X. Liu, S. Fang, W. Liu and Y. Liu, *J. Mater. Chem. A*, 2016, 4, 14577–14585.
- 6 B. Ouyang, G. Lan, Y. Guo, Z. Mi and J. Song, *Appl. Phys. Lett.*, 2015, **107**, 191903.
- 7 R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský and M. Pumera, *Chem. Commun.*, 2017, 53, 3054–3057.
- A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D.
 Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Mater.*, 2013, 1, 011002..
- Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell,
 F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan and J. Lou, *Nat. Commun.*, 2014, 5, 5246.
- G. H. Ahn, M. Amani, H. Rasool, D. H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey,D. C. Chrzan, A. M. Minor and A. Javey, *Nat. Commun.*, 2017, 8, 608.
- 11 Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du, T. Fujita, A. Hirata, Z. Tang and M. Chen,

ACS Nano, 2018, 12, 1571-1579.

- 12 C. Rosen, E. Banks and B. Post, Acta Crystallogr., 1956, 9, 475–476.
- R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubsky and M. Pumera, *Chem. Commun.*, 2017, 21, 3054–3057
- 14 L. R. Arcot, M. Lundahl, O. J. Rojas and J. Laine, *Cellulose*, 2014, 21, 4209–4218.
- I. Liu, N. Li, C. Su, H. Zhao, L. Xu, Z. Yin, J. Li and Y. Du, *Nano Energy*, 2018, 50, 176–181.
- S. Darmawi, S. Burkhardt, T. Leichtweiss, D. A. Weber, S. Wenzel, J. Janek, M. T.
 Elm and P. J. Klar, *Phys. Chem. Chem. Phys.*, 2015, 17, 15903–15911
- 17 L. Zhang, Z. J. Zhao and J. Gong, Angew. Chemie. Int. Ed., 2017, 56, 11326–11353.
- 18 G. O. Larrazábal, A. J. Martín, S. Mitchell, R. Hauert and J. Pérez-Ramírez, ACS Catal., 2016, 6, 6265–6274.
- Y. Yang, H. Fei, G. Ruan, Y. Li and J. M. Tour, *Adv. Funct. Mater.*, 2015, 25, 6199–6204.
- Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher and X. Wang, J. Mater. Chem. A, 2015, 3, 131–135.
- X. Chia, A. Ambrosi, Z. Sofer, J. Luxa and M. Pumera, *ACS Nano*, 2015, 9, 5164–
 5179.
- M. a Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers and
 S. Jin, *Energy Environ. Sci.*, 2014, 7, 2608–2613.

- D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa,
 V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, 12, 850–855.
- 24 A. Ambrosi, Z. Sofer and M. Pumera, *Chem. Commun.*, 2015, **51**, 8450–8453.
- A. Y. S. Eng, A. Ambrosi, Z. Sofer, P. Šimek and M. Pumera, *ACS Nano*, 2014, 8, 12185–12198.
- J. Duan, S. Chen, B. A. Chambers, G. G. Andersson and S. Z. Qiao, *Adv. Mater.*, 2015, 27, 4234–4241.
- 27 J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and H. S. Shin, Angew. Chemie - Int. Ed., 2013, 52, 13751–13754.
- T. A. Shifa, F. Wang, Z. Cheng, X. Zhan, Z. Wang, K. Liu, M. Safdar, L. Sun and J. He, *Nanoscale*, 2015, 7, 14760–14765.
- 29 T. A. Shifa, F. Wang, K. Liu, Z. Cheng, K. Xu, Z. Wang, X. Zhan, C. Jiang and J. He, *Small*, 2017, 13, 2–7.
- 30 J. Lin, Z. Peng, G. Wang, D. Zakhidov, E. Larios, M. J. Yacaman and J. M. Tour, Adv. Energy Mater., 2014, 4, 1301875.
- Z. Wu, B. Fang, A. Bonakdarpour, A. Sun, D. P. Wilkinson and D. Wang, *Appl. Catal. B Environ.*, 2012, **125**, 59–66.
- 32 S. Xu, D. Li and P. Wu, *Adv. Funct. Mater.*, 2015, **25**, 1127–1136.
- 33 C. Sun, J. Zhang, J. Ma, P. Liu, D. Gao, K. Tao and D. Xue, *J. Mater. Chem. A*, 2016,
 4, 11234–11238.
- 34 L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai, Angew. Chemie Int.

Ed., 2014, **53**, 7860–7863.

- 35 X. Zhao, X. Ma, J. Sun, D. Li and X. Yang, ACS Nano, 2016, 10, 2159–2166.
- 36 K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang, Z. Cheng, M. Safdar and J. He, ACS Nano, 2014, 8, 8468–8476.
- F. Wang, J. Li, F. Wang, T. A. Shifa, Z. Cheng, Z. Wang, K. Xu, X. Zhan, Q. Wang, Y.
 Huang, C. Jiang and J. He, *Adv. Funct. Mater.*, 2015, 25, 6077–6083.
- 38 J. Zhang, S. Liu, H. Liang, R. Dong and X. Feng, Adv. Mater., 2015, 27, 7426–7431.