Electronic supplementary information

High efficiency photo-oxidation of thioethers over

C₆₀@PCN-222 under air

Deng-Yue Zheng, En-Xuan Chen, Chun-Rong Ye, and Xiao-Chun Huang*

Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University, Guangdong, 515063, P. R. China

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Guangdong, 515063 P.R. China

*E-mail: xchuang@stu.edu.cn

- Fig. S1. A linear relationship between the C_{60} concentration and its UV absorbance.
- Fig. S2. UV analysis of C_{60} content in a series of C_{60} @PCN-222 composites.
- **Fig. S3** DFT pore size distribution for C_{60} @PCN-222 photocatalysts.
- **Fig. S4** Solid-state UV-*vis* spectra of C_{60} @PCN-222 samples.
- Fig. S5 Room-temperature PL excitation and emission spectra of C₆₀@PCN-222 samples.
- Fig. S6 Time course of the products distribution for the photocatalytic oxidation of thioanisole.
- **Fig. S7-S8** Recycling experiments of the 3%-C₆₀@PCN-222 photocatalyst.
- Scheme S1 Proposed mechanism for the selective oxidation of sulfides into sulfoxides.
- **Table S1** Comparison of the photocatalytic oxidation activities of thioanisole to phenyl methyl sulfoxide.

Fig. S1 A linear relationship between the C60 concentration and its UV absorbance.

Fig. S2 UV analysis of C_{60} content in a series of C_{60} @PCN-222 composites.

 C_{60} content calculation: C_{60} @PCN-222 samples were digested by 1 mol/L KOH solution, then 100 mL toluene were used to extract C_{60} for several times, and then the extraction solution was analyzed by UV spectrum based on working curve in Fig. S1.

Sample name	Sample usage (mg)	Toluene (mL)	UV- <i>vis</i> absorbance	c. (mg/mL)	C ₆₀ /C ₆₀ @PCN-222
3%-C ₆₀ @PCN- 222	15	100	0.37	0.0049	0.032
5%-C ₆₀ @PCN- 222	12	100	0.43	0.0059	0.049
8%-C ₆₀ @PCN- 222	9	100	0.55	0.0073	0.081

Fig. S3 DFT pore size distribution for as-synthesized PCN-222 and C_{60} @PCN-222 composites with different C_{60} contents based on N₂ adsorption isotherms at 77 K.

Fig. S4 Solid-state UV-vis spectra of PCN-222 and 3%/5%/8%-C₆₀@PCN-222 at room temperature.

Fig. S5 Room-temperature PL spectra of H₂TCPP, PCN-222, 3%/5%/8%-C₆₀@PCN-222 composites ($\lambda_{ex} = 380$ nm).

Fig. S6 Time course of the products distribution for the photocatalytic oxidation of thioanisole.

Fig. S7 PXRD profiles of 3%-C₆₀@PCN-222 after catalytic reaction

Fig. S8 N_2 sorption isotherms for 3%-C₆₀@PCN-222 before reaction and after 5 catalytic cycles at 77 K

Scheme S1. The proposed mechanism for the selective oxidation of sulfides into sulfoxides with air in the merger of visible light photocatalysis of C_{60} @PCN-222.

Catalytic	Oxid.	T. (h)	Abs. (nm)	Photo intensit y	Con. (%)	Sel. (%)	TOF (h ⁻¹)	Ref.
3%-C ₆₀ @PCN- 222	air	3	λ > 400	50 mW/cm 2	100	100	80 ^b	This work
5%-C ₆₀ @PCN- 222	air	2	λ > 400	50 mW/cm 2	100	100	71.4 ^b	This work
8%-C ₆₀ @PCN- 222	air	2	λ > 400	50 mW/cm 2	100	100	45.5 ^b	This work
MOF-6	air	22		26 W fluoresc ent lamp	73	100	16.6	J. Am. Chem. Soc. 2011, 133, 13445
Ru ^{II} _{chro} –Cu ^{II} _{cat} ^a	air	20		blue LEDs		90	2	ChemSusChem 2017, 10, 3358
рТСТ	air	12		26 W white CFL	> 99	97	0.007	J. Mater. Chem. A 2018, 6, 15154
1 (MOF)	H ₂ O ₂	4	λ > 420	300 W Xe lamp	99	95	16.7	ACS Appl. Mater: Interfaces 2019, 11, 3016.
RuII(TMP)(CO)	PhI(O Ac) ₂	10 0	λmax= 420		100	99	31.25	Applied Catalysis A: General 2014, 478, 275.
4%C ₆₀ /g-C ₃ N ₄	O ₂	6	λ > 400	1 W /cm ²	100	100	20	<i>ChemSusChem</i> 2018, 11, 2444
TBA ₄ H[γ- PV ₂ W ₁₀ O ₄₀]	O ₂	24	λ > 400	xenon lamp	100	92	0.0004	<i>Chem. Commun.</i> 2018, 54, 7127
DBFL ^a	O ₂	8.3		110 W /m ²	100	100	0.005	ACS Sustainable Chem. Eng. 2018, 6, 15254
SnPor@PAF	O ₂	0.5		90 mW/cm 2	31	99	19872	<i>Adv. Synth. Catal.</i> 2018, 360, 4402

Table S1. Comparison of the photocatalytic oxidation activities of thioanisole to phenyl methyl sulfoxide.

Au ₃₈ S ₂ (SAdm) ₂	O ₂	12	532	~34 mW/cm 2	58	100	20.83	ACS Catal. 2017, 7, 3368
ARS-TiO ₂	O ₂	10	λ > 450	300 W Xe lamp	81	91	75	Angew. Chem. 2016, 128, 4775
Degussa P ₂₅ TiO ₂	O ₂	22	λ > 400	300 W Xe lamp	81	93	0.05	Chem. Sci. 2015, 6, 5000
TiO ₂	O ₂	4	λ > 400	300 W Xe lamp	83	92	0.15	Chem. Sci. 2015, 6, 1075
0.5 wt.% Pt/BiVO ₄	O ₂	5.5	λ > 420	300 W Xe lamp	96	98	36	Journal of Catalysis 2015, 332, 95
1 (MOF)	O ₂	12		350 W Xe lamp	> 99.9	> 99.9	0.84	Inorg. Chem. 2011, 50, 5318
eden(30)	O ₂	6		white LEDs	61.8	99	2.1	Catal. Sci. Technol. 2017, 7, 587
mpg-C ₃ N ₄	O ₂	4	λ > 420	a mercury lamp (150 W)	97	98	0.62	<i>Green Chem.</i> 2012, 14, 1904

^{*a*} homogeneous photocatalyst

^{*b*} Turnover frequency (TOF) = [moles of **1b**] / [(moles of C_{60}) × (reaction time)]