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Fig. S1. The surface zeta potential of nascent PK substrate, APTES-d-PK membrane, 

and SiO2-d-PK membrane at the PH values of 2-9.



Fig. S2. The mechanism of electrostatic attraction forced in-situ surface silicification 

for the preparation of SiO2-d-PK membrane: (a) the hydrolysis and condensation 

process of APTES monomer; (b) the hydrolysis and condensation process of TEOS 

monomer; (c) the condensation process between the surface silicification layer with 

APTES layer.



Fig. S3. TEM cross-sectional images of (a) PK and (b)SiO2-d-PK membranes.



Fig. S4. Morphologies and pore size of the SiO2-PK membrane without APTES 

pretreatment:(a) surface morphology; (b) enlarged surface morphology; (c) cross-

section morphology; and (d) pore size distribution.



Fig. S5. The surface morphologies of SiO2-d-PK membranes over the prolonged 

silicification process: (a) 1h; (b) 3h; (c) 6h; (d) 9h.



Fig. S6. The surface morphologies of SiO2-d-PK membranes with different TEOS 

concentrations under the same surface silicification period of 6 h: (a) 3 ml, (b) 5ml, and 

(c) 7 ml in 100 ml ethanol solutions.



Fig. S7. FTIR characterization results of the PK and APTES-d-PK membranes with 

different deposition time.
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Fig. S8. XPS characterization results of PK, APTES-d-PK, and SiO2-d-PK 

membranes.



Fig. S9. MD simulation results of (a) models between water molecules and PK, APTES, 

and SiO2 within 3.5 Å, where the molecular chains are colored as follows: PK: blue; 

APTES: yellow; SiO2: green; water: red; (b) RDF analysis between the oxygen atom of 

water and the oxygen atoms of PK, APTES, and SiO2.



Fig. S10. Underwater dynamic oil-adhesion tests on the SiO2-d-PK membranes surface 

prepared under different silicification periods, and the chloroform was used as the probe 

oil in this test.
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Fig. S11. Antifouling property of SiO2-d-PVDF membrane for soybean oil-in-water 

emulsion.



Table S1. The surface porosities of the as-prepared membranes

membranes PK APTES-d-PK SiO2-d-PK

Surface porosity (%) 44.3 ±4.8 43.4 ±0.8 41.0 ±4.2


