Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2019

Supporting information

Ultrathin in situ silicification layer developed by electrostatic
attraction forced strategy for ultrahigh-performance oil-water

emulsions separation

Lei Zhang, Yuqing Lin*, Haochen Wu, Liang Cheng, Yuchen Sun, Tomoki Yasui,
Zhe Yang, Shengyao Wang, Tomohisa Yoshioka, Hideto Matsuyama*

Research Center for Membrane and Film Technology, Department of Chemical Science

and Engineering, Kobe University, Kobe 657-8501, Japan

* Corresponding authors
E-mail: yqlin@people.kobe-u.ac.jp (Yuqing Lin)

matuyama@kobe-u.ac.jp (H. Matsuyama)


mailto:yqlin@people.kobe-u.ac.jp

0r e —H—PK
—@— APTES-d-PK
%‘20 \. ~o—@— .A SiO,~d-PK (6h)
Té 10+ g .\.
E 0r------ o I\A\ ...........
2 m A
10+ A,
N 20} "—n
30 -
2 4 6 8 10
PH

Fig. S1. The surface zeta potential of nascent PK substrate, APTES-d-PK membrane,

and Si0,-d-PK membrane at the PH values of 2-9.
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Fig. S2. The mechanism of electrostatic attraction forced in-situ surface silicification
for the preparation of SiO,-d-PK membrane: (a) the hydrolysis and condensation
process of APTES monomer; (b) the hydrolysis and condensation process of TEOS
monomer; (c¢) the condensation process between the surface silicification layer with

APTES layer.



Fig. S3. TEM cross-sectional images of (a) PK and (b)Si0,-d-PK membranes.



40 80 120
Pore size (nm)

160 200
Vil

Fig. S4. Morphologies and pore size of the SiO,-PK membrane without APTES
pretreatment:(a) surface morphology; (b) enlarged surface morphology; (c) cross-

section morphology; and (d) pore size distribution.



Fig. S5. The surface morphologies of SiO,-d-PK membranes over the prolonged
silicification process: (a) 1h; (b) 3h; (c) 6h; (d) Sh.
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Fig. S6. The surface morphologies of SiO,-d-PK membranes with different TEOS
concentrations under the same surface silicification period of 6 h: (a) 3 ml, (b) Sml, and

(c) 7ml in 100 ml ethanol solutions.
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Fig. S7. FTIR characterization results of the PK and APTES-d-PK membranes with

different deposition time.
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Fig. S8. XPS characterization results of PK, APTES-d-PK, and SiO,-d-PK

membranes.
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Fig. S9. MD simulation results of (a) models between water molecules and PK, APTES,
and SiO, within 3.5 A, where the molecular chains are colored as follows: PK: blue;
APTES: yellow; Si0O,: green; water: red; (b) RDF analysis between the oxygen atom of

water and the oxygen atoms of PK, APTES, and SiO,.
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Fig. S10. Underwater dynamic oil-adhesion tests on the Si0,-d-PK membranes surface
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prepared under different silicification periods, and the chloroform was used as the probe

oil in this test.
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Fig. S11. Antifouling property of SiO,-d-PVDF membrane for soybean oil-in-water

emulsion.



Table S1. The surface porosities of the as-prepared membranes

membranes PK APTES-d-PK Si0,-d-PK

Surface porosity (%) 443 +4.8 43.4+0.8 41.0+4.2




