Supporting information for

Metal-organic-framework-derived porous 3D heterogeneous $NiFe_x/NiFe_2O_4$ (a) NC nanoflowers as highly stable and efficient electrocatalysts for the oxygen-evolution reaction

Jia Zhao^{1,#}, Xu Zhang^{1,#}, Ming Liu¹, Yi-Zhan Jiang¹, Min Wang¹, Zhao-Yang Li^{1,*}, and Zhen Zhou^{1,2}

¹School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P.R. China

²Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Institute of New Energy Material Chemistry, Computational Centre for Molecule Science, Nankai University, Tianjin 300071, P.R. China

Email: zhaoyang@nankai.edu.cn

[#]J. Zhao and X. Zhang contributed to this work equally.

Fig. S1 The PXRD patterns of NiFe-HF.

Fig. S2 The low-magnification SEM image (a) and corresponding TEM image (b) of

NiFe-HF.

Fig. S3 The EDS-Mapping of single NiFe-HF nanoflower.

Fig. S4 (a) The SEM images of initial Hofmann MOFs (b) The SEM images of Hofmann MOFs, when the quality ratio of PVP and ascorbic acid is 10: 1.

Fig. S5 The PXRD patterns of NiFe_x@NC.

Fig. S6 The low-magnification SEM image (a) and corresponding TEM image (b) of $NiFe_x@NC$ nanoflowers.

Fig. S7 HRTEM image of NiFe_x@NC nanoflower.

Fig. S8 The EDS-Mapping of single NiFe_x@NC nanoflower.

Fig. S9 The PXRD patterns of NiFe_x/NiFe₂O₄@NC.

Fig. S10 The low-magnification SEM image of $NiFe_x/NiFe_2O_4@NC$.

Fig. S11 The PXRD patterns of $NiFe_2O_4$.

Fig. S12 The low-magnification SEM image (a) and corresponding TEM image (b) of

 $NiFe_2O_4$ nanoflowers.

Fig. S13 HRTEM image of NiFe₂O₄.

Fig. S14 The EDS-Mapping of single $NiFe_2O_4$ nanoflower.

Fig. S15 The XPS N1s spectrum of NiFe_x/NiFe₂O₄@NC.

Fig. S16 The XPS C 1s, O 1s, Fe 2p and Ni 2p spectra of NiFe_x@NC.

Fig. S17 The XPS N1s spectrum of NiFe_x@NC.

Fig. S18 The XPS C 1s, O 1s, Fe 2p and Ni 2p spectra of NiFe₂O₄.

Fig. S19 The XPS N1s spectrum of NiFe₂O_{4.}

Fig. S20 LSV curves of NiFe_x/NiFe₂O₄@NC, NiFe_x@NC, NiFe₂O₄ and NiFe-HF.

Fig. S21 Tafel plots of NiFe_x/NiFe₂O₄@NC, NiFe_x@NC, NiFe₂O₄ and NiFe-HF.

g. S22 CV curves from 1.11 to 1.21 V (vs RHE) of (a) NiFe_x/NiFe₂O₄@NC, (b)

NiFe_x@NC, (c) NiFe₂O₄, (d) IrO₂, (e) CFP and (f) NiFe-HF.

Fig. S23 Current density (at 1.16 V vs RHE) as function of scan rate for NiFe-HF.

	NiFe _x @NiFe ₂ O ₄ @NC	NiFe _x @NC	NiFe ₂ O ₄	NiFe-HF
ECSA	4.81	0.93	1.97	1.3

Fig. S24 Nyquist plots of NiFe_x/NiFe₂O₄@NC, NiFe_x@NC, NiFe₂O₄ and NiFe-HF.

Fig. S25 Faradaic efficiency plot of NiFe_x@NiFe₂O₄@NC.

Fig. S26 LSV curves of NiFe_x/NiFe₂O₄@NC at different scan rates.

Fig. S27 Tafel plot of NiFe_x/NiFe₂O₄@NC at a scan rate of 1 mv/ s.

Fig. S28 LSV curves of NiFe₂O₄ at different scan rates.

Fig. S29 Tafel plot of $NiFe_2O_4$ at a scan rate of 1 mv/s.

Fig. S30 LSV curves of NiFe_x@NC at different scan rates.

Fig. S31 Tafel plot of NiFe_x@NC at a scan rate of 1 mv/s.

Fig. S32 LSV curves of NiFe-HF at different scan rates.

Fig. S33 Tafel plot of NiFe-HF at a scan rate of 1 mv/ s.

Table S2. Comparison of overpotentials of the as-prepared catalysts at different scan rates.

Scan rate	NiFe _x /NiFe ₂ O ₄ @NC (mV)	$NiFe_2O_4(mV)$	NiFe _x @NC (mV)	NiFe-HF (mV)	
1 mV/ s	1 mV/ s 278		281	281	
10 mV/ s	262	302	266	282	

Table S3. Comparison of Tafel slopes of the as-prepared catalysts at different scan rates.

Scan rate	NiFe _x /NiFe ₂ O ₄ @NC	NiFe ₂ O ₄	NiFe _x @NC	NiFe-HF	
	(mV dec ⁻¹)	(mV dec ⁻¹)	$(mV dec^{-1})$	(mV dec ⁻¹)	
1 mV/ s	51.7	52.3	51.7	57.0	
10 mV/ s	51.4	53.6	156	56.7	

Fig. S34 XPS C 1s (a), O 1s (b), Fe 2p (c), Ni 2p (d) spectra of $NiFe_x/NiFe_2O_4@NC$

after 2000 cycles.

Fig. S35 XPS N 1s spectrum of NiFe_x/NiFe₂O₄@NC after 2000 cycles.

Fig. S36 Side (up) and top (down) view of the geometry of (a) $NiFe_2O_4$ (400), (b)

(311), (c) FeNi₃ (111) and (d) (200) surface.

Fig. S37 Free energy diagram for OER on (a) $NiFe_2O_4$ (400) and (b) (311) surfaces at

different electrode potentials in alkaline media

Fig. S38 Side (up) and top (down) view of NiFe₂O₄ (400) after the adsorption of (a) O*,

(b) OH* and (c) OOH*.

Fig. S39 Side (up) and top (down) view of NiFe₂O₄ (311) after the adsorption of (a) O*,

(b) OH* and (c) OOH*.

Fig. S40 Free energy diagram for OER on FeNi₃ (200) surface at different electrode

potentials in alkaline media.

Fig. S41 Side (up) and top (down) view of FeNi₃ (200) after the adsorption of (a) O*, (b)

OH* and (c) OOH*.

Fig. S42 Side (up) and top (down) view of FeNi₃ (111) after the adsorption of (a) O^* , (b)

OH* and (c) OOH*.

Table S4 Comparison of OER performance of NiFe_x/NiFe₂O₄@NC with other reported

Material	Electrolyte	Current	Overpotential	Stability	C _{dl}	Tafel slope
		Density	(mV)	(h)	(mF cm ⁻²)	(mV dec ⁻¹)
		(mA cm ⁻²)				
NiFe _x /NiFe ₂ O ₄ @NC	1 М КОН	10	262	150	24.93	51.4
this work						
NiO/NiFe LDH [1]	1 М КОН	10	215	10	—	32
Fe-Ni@NC-CNTs [2]	1 M KOH	10	274	11	12.34	45.47
NiFe	1 M KOH	10	220	100	18.07	48.6
LDH@NiCoP/NF [3]						
Two cycle	1 М КОН	10	200	100	_	31.5
NiFeO _x /CFP [4]						
NiFe NCs [5]	1 М КОН	10	271	18	16.3	48
Ni ₂ Fe ₁ nanofoams	1 М КОН	10	270	12	0.34	70
[6]						
P-Ni 0.5 Fe@C [7]	1М КОН	10	256	15	7.9	65
P-NiFe ₂ O ₄ nanosheet	1 М КОН	10	231	50	26.5	49
[8]						
Fe-Ni-O _x [9]	0.1 M KOH	10	584	1.7	3.82	72
NiFeO _x (Fe)/NF-2	0.1 M KOH	10	260	12	2.47	41
[10]						
hcp-NiFe@NC [11]	1 М КОН	10	226	35		41
NiFe/NiFeO _x (0.1)	0.1 M KOH	10	340	—	—	34
[12]						
FeB ₂ [13]	1 М КОН	10	296	48	33.68	52.4
Ni-Fe-O-P [14]	1 М КОН	10	227	10		50
NiFe-OH NS/NF [15]	1 М КОН	50	244	30	5.145	46.7
LaNiFe hydroxide	1 М КОН	10	189	100		36
[16]						
NiFe/MoS ₂ sheet [17]	1 M KOH	10	260	24	4.61	48
Mo-doped Ni–Fe	1 M KOH	10	231	16	—	39
oxide [18]						
FeNi ₃ @c-2% [19]	1 М КОН	10	275	10	6.8	62
FeNi ₃ /NiFeO _x [20]	1 M KOH	10	246	1.67	0.0551	—

non-precious metal electrocatalysts tested under similar conditions.

References

- Z. W. Gao, J. Y. Liu, X. M. Chen, X. L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W. C. Wang and X. W. Du, *Adv. Mater.*, 2019, **31**, 1804769–1804777.
- 2. X. Zhao, P. Pachfule, S. Li, J. R. J. Simke, J. Schmidt and A. Thomas, *Angew. Chem., Int. Ed.*, 2018, **57**, 8921–8926.
- 3. H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W.

Maijenburg and R. B. Wehrspohn, Adv. Funct. Mater., 2018, 28, 1706847-1706857.

- 4. H. Wang, H. W. Lee, Y. Deng, Z. Lu, P. C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. Commun.*, 2015, **6**, 7261–7269.
- 5. A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906–41915.
- S. Fu, J. Song, C. Zhu, G.-L. Xu, K. Amine, C. Sun, X. Li, M. H. Engelhard, D. Du and Y. Lin, *Nano Energy*, 2018, 44, 319–326.
- A. Fan, C. Qin, X. Zhang, X. Dai, Z. Dong, C. Luan, L. Yu, J. Ge and F. Gao, ACS Sustain. Chem. Eng., 2018, 7, 2285–2295.
- 8. Q. Chen, R. Wang, F. Lu, X. Kuang, Y. Tong and X. Lu, *ACS Omega*, 2019, 4, 3493–3499.
- 9. J. Jiang, C. Zhang and L. Ai, *Electrochim. Acta*, 2016, **208**, 17–24.
- 10. X. Shang, Z. Z. Liu, J. Q. Zhang, B. Dong, Y. L. Zhou, J. F. Qin, L. Wang, Y. M. Chai and C. G. Liu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 42217–42224.
- 11. C. Wang, H. Yang, Y. Zhang and Q. Wang, *Angew. Chem., Int. Ed.*, 2019, **58**, 6099–6103.
- 12. K. Zhu, M. Li, X. Li, X. Zhu, J. Wang and W. Yang, *Chem. Commun.*, 2016, **52**, 11803–11806.
- H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll and S. M. Geyer, *Adv. Energy Mater.*, 2017, 7, 1700513–1700525.
- C. Xuan, J. Wang, W. Xia, J. Zhu, Z. Peng, K. Xia, W. Xiao, Huolin L. Xin and D. Wang, *J. Mater. Chem. A*, 2018, 6, 7062–7069.
- 15. W. Zhu, T. Zhang, Y. Zhang, Z. Yue, Y. Li, R. Wang, Y. Ji, X. Sun and J. Wang, *Appl. Catal. B: Environ.*, 2019, **244**, 844–852.
- G. Chen, Y. Zhu, H. M. Chen, Z. Hu, S. F. Hung, N. Ma, J. Dai, H. J. Lin, C. T. Chen, W. Zhou and Z. Shao, *Adv. Mater.*, 2019, **31**, 1900883–1900890.
- 17. Y. Wang, Y. Zhou, M. Han, Y. Xi, H. You, X. Hao, Z. Li, J. Zhou, D. Song, D. Wang and F. Gao, *Small*, 2019, **15**, 1805435–1805443.
- 18. Y. Chen, C. Dong, J. Zhang, C. Zhang and Z. Zhang, *J. Mater. Chem. A.*, 2018, 6, 8430–8440.
- 19. H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong and Q. Yan, *Angew. Chem., Int. Ed.*, 2017, **56**, 12566–12570.
- 20. X. Yan, L. Tian, K. Li, S. Atkins, H. Zhao, J. Murowchick, L. Liu and X. Chen, *Adv. Mater. Interfaces*, 2016, **3**, 1600368–1600376.