Efficient Perovskite Solar Cells Enabled by Ions Modulated

Grain Boundary Passivation with a Fill Factor Exceeding 84%

Zhiqi Li¹, Feng Wang², Chunyu Liu¹, Feng Gao^{2,*}, Liang Shen¹, and Wenbin Guo^{1,*}

¹State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of

China

²Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden

Figure S1 a) The TEM image of CNDs at magnification of 20 nm; **b)** HRTEM image of CNDs@K at magnification of 5 nm, the crystal lattice of (002) plane is observed; **c)** Electron diffraction pattern of CNDs, diffraction circles from the (002) plane is observed.

Figure S2 Schematic diagram of the defects in K⁺ doped perovskite lattice.

Figure S3 Top-view SEM image of perovskite films with extra KI.

Figure S4 XRD patterns of the perovskite films with various concentration of CNDs@K.

Figure S5 Top-view SEM images of the perovskite films with CNDs@K concentration of (g) 0.1, (h)

 $0.25,\,and$ (i) 0.4 mg/mL, repectively.

Figure S6 UV-vis absorption for the perovskite films with various concentrations of CNDs@K doping;

Figure S7 a) *J-V* curves of perovskite devices with different amount of CNDs@K in the MAPbI₃ precursor solution; **b)** *J-V* curves of perovskite devices with CNDs, K⁺, and CNDs@K in the MAPbI₃

precursor solution.

Figure S8 a) the *J*-*V* curves of hole only devices without and with CNDs@K, b) the *J*-*V* curves of the electron-only devices with and without CNDs@K; The electron only devices have the structure of ITO/PCBM/perovskite/PCBM/Bphen/Ag, and the hole only devices have the structure of ITO/PTAA/perovskite/ Spiro-OMeTAD/Ag.

10010 01		ce parameters ado	litives.			•••••
			V _{oc}	J _{sc}	FF	PCE
Control	0	Best	1.08	21.51	78.51	18.25
		Average	1.08	21.48	76.29	17.76
CNDs@K	1	Best	1.09	22.19	80.57	19.49
		Average	1.09	22.09	79.11	19.14
	2.5	Best	1.10	22.69	84.07	21.01
		Average	1.10	22.60	82.93	20.51
	4	Best	1.09	22.41	81.01	19.84
		Average	1.09	22.33	80.41	19.58
KI	5	Best	1.08	22.32	80.85	19.51
		Average	1.08	22.24	79.11	19.01
CNDs	3	Best	1.09	22.51	81.60	20.03
		Average	1.09	22.42	80.29	19.61

Experimental Section

Materials

lead (II) iodide (PbI₂), Methylamine iodide (MAI), bathocuproine (BCP), and PTAA were purchased from Xi'An P-OLED Co. (China). [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was purchased from American Dye Source Inc. Chlorobenzene (CB), N,N-dimethylformamide (DMF), and dimethylsulfoxide (DMSO) were purchased from Aladdin. All of the chemical reagents are commercial available and used as received without further purification unless otherwise stated.

Device Fabrication

For the device preparation, we follow the procedure reported elsewhere. All the preparation steps were conducted in dehumidified atmosphere (~25 °C, RH < 30%). The poly(bis(4-phenyl)(2,4,6trimethylphenyl)amine) (PTAA) hole transport layer was prepared by spin-coating a toluene solution containing PTAA with a concentration of 5 mg mL⁻¹ and 3 wt% F4TCNQ on the top of the pre-cleaned ITO -coated glass (2.0 cm×1.5 cm, sheet resistance: 15 Ω sq⁻¹) at the speed of 4000 rpm for 30 s. The PTAA-coated substrates were then baked at 110 °C for 15 min in air. The MAPbI₃ perovskite precursor solution was prepared by dissolving 461 mg PbI₂ and 159 mg MAI in 78 µL DMSO(molar ratio: 1:1:1) and 600 µL DMF. The solution was stirred at room temperature for 12h. The CNDs, KI, and CNDs@K were directly added to the perovskite precursor solution for the fabrication of the corresponding device. The perovskite precursor solution was coated onto the PTAA:F4TCNQ/ITO substrate by an antisolvent extraction approach in air. Following prewetting of the substrates by spinning 50 µL DMF at 4000 rpm for 8 s, the dissolved precursor solution was spin-coated on the PTAA layer at 4000 rpm for 25 seconds; 0.5 ml diethyl ether was slowly dripped on the rotating substrate 5 seconds after the start of the spinprocedure. Subsequently, the transparent film was annealed at 60 °C for 1 min and 100 °C for 2 min to obtain a dense perovskite film. After cooling to room temperature, PCBM dissolved in anhydrous chlorobenzene with a concentration of 20 mg mL⁻¹ was coated onto the perovskite substrate by spin coating at 4000 rpm for 30 s. Bphen dissolved in absolute ethyl alcohol with a concentration of 0.7 mg mL⁻¹ was deposited on PCBM by spin coating at 5000 rpm for 30 s. Finally, the device was completed through the evaporation of Ag contact electrodes (100 nm) at a vacuum level of 10^{-5} Pa through a shadow mask. The active area of this electrode was fixed at 0.04 cm².

Device Characterization

The current–voltage characteristics were recorded by a Keithley Model 2400 Source-Meter at a voltage scan rate of 0.1 V s⁻¹. The measurements were conducted under a simulated AM 1.5G irradiation (100 mW cm⁻²) by a Newport solar simulator, and the light intensity was calibrated using a standard Si-solar cell. The steady-state PCE was measured by monitoring current with largest power output bias voltage and recorded the value of photocurrent (the steady-state J_{sc}). External Quantum Efficiency (EQE) curves were measured using a QE measurement kit by focusing each monochromatic light onto the devices. X-ray diffractometer (XRD) measurements were performed using a glazing incidence X-ray diffractometer. Scanning electron microscopy (SEM) images were taken from a JSM-7600F hot field emission scanning electron microscopy. The steady state photoluminescence (PL) spectra of the perovskite films were measured by a fluorescence spectrophotometer with a standard light source. Time-resolved photoluminescence (TRPL) were recorded using a commercial fluorescence lifetime system.