Supporting information

Hydrogen Peroxide Synthesis on Porous Graphitic Carbon Nitride Using Water as Hydrogen Source

Yongyong Cao¹, Guobing Zhou², Xianlang Chen¹, Qi Qiao², Chenxia Zhao¹, Xiang Sun¹. Xing Zhong¹,

*Guilin Zhuang*¹, *Shengwei Deng*¹, *Zhongzhe Wei*¹, *Zihao Yao*¹, *Liangliang Huang*^{2*}, *Jianguo Wang*^{1*}

1. Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032 China

2. School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States

Fig. S1 Validate the C/N/O/H ReaxFF force field parameters. (a) (b) Optimized the bond length and angle of dehydrogenated $g-C_5N_2$ structure by *ab initio* density functional theory (DFT) calculation. (c) (d) Comparisons between DFT and RxMD results for calculating the bond length and angle distribution functions.

Fig. S2 Snapshot of H_2O and O_2 by the RxMD simulations at 5.0 ns.

Fig. S3 The different the models of hydrogenation coverage of g-C₅N₂.

Fig. S4 Optimized configurations and adsorption energy for O₂ and H₂O binging on the basal plane (a, c) and the pore (b, d) of dehydrogenated g-C₅N₂, respectively.

Fig. S5 (a) (b) the top and side view of configuration of the $g-C_5N_2$ with 50 O_2 molecules after 2.0 ns.

Fig. S6 Distribution of the Bader charge of dehydrogenated $g-C_5N_2$. The negative sign"-" represents the loss of electrons.

Fig. S7 Ab initio molecular dynamics calculation of $g-C_5N_2$ regeneration in an acid solution: 6 H₂O molecules and 2 H₃O⁺ molecules are placed in the pore of a deactivated $g-C_5N_2$. Edge nitrogen sites are fully hydrogenated and carbon sites are alternatively bonded with OH and O, mimicking the accumulation of OH and O after H₂O₂ production. The color codes are: C of $g-C_5N_2$, gray; N of $g-C_5N_2$, blue; H of free H₂O, cyan; O of free H₂O, pink; H of adsorbed H₂O, green; O of adsorbed H₂O, yellow. Both line and ball models are used to illustrate the removal of adsorbed OH and O, and the regeneration of $g-C_5N_2$ catalyst.

Fig. S8 Snapshots of H_2O_2 production on the N-site full hydrogenation $g-C_5N_2$ (Model 3) described by the AIMD simulations. The two hydrogen atoms of H_2O_2 come from the adsorbed H_2O and the Nsite full hydrogenation $g-C_5N_2$. The color codes are: C of $g-C_5N_2$, gray; N of $g-C_5N_2$, blue; H of free H_2O , cyan; O of free H_2O , pink; H of adsorbed H_2O , green; O of adsorbed H_2O , red. Both line and ball models are used in the snapshots, to empahsize the formation of H_2O_2 . For clarity, not all free water molecules are shown.

Fig. S9 Snapshots of H_2O_2 production on the N-site full hydrogenation $g-C_5N_2$ described by the AIMD simulations. The two hydrogen atoms of H_2O_2 come from the one adsorbed H_2O_2 .

Fig. S10 Snapshots of H_2O_2 production on full hydrogenation g- C_5N_2 (Model 4) described by the AIMD simulations. Structures corresponding to the reaction path followed by PTM.

Fig. S11 Snapshots of H_2O_2 production on full hydrogenation g- C_5N_2 by the AIMD simulations.

Structures corresponding to the reaction path followed by DFM.

Fig. S12 Schematic representation of proton transfer between adsorbed $\mathrm{H_{2}O}$ molecules and N-site

full hydrogenation g-C₅N₂.

Fig. S13. (a) Distribution of the Bader charge of Model 5. Optimized configurations and adsorption energy for O_2 (b), H_2O (c), and O_2 and H_2O (d) binging on partially hydrogenation g- C_5N_2 , respectively.

Fig. S14 (a), (b) Energy profile and optimized configurations for OOH* formation in the model 3.

Coverage	Energy (eV)	Coverage	Energy (eV)
Φ ₀ =0/18	-351.41	$\Phi_{10} = 10/18$	-405.33
$\Phi_{1_1}=1/18$	-357.52	$\Phi_{103} = 10/18$	-405.86
Φ_{2} 1=2/18	-364.06	$\Phi_{11}^{-}=11/18$	-409.16
$\Phi_{31} = 3/18$	-369.97	$\Phi_{112} = 11/18$	-410.94
$\Phi_{32} = 3/18$	-369.37	$\Phi_{113} = 11/18$	-406.59
$\Phi_{33}^{-}=3/18$	-368.58	$\Phi_{12}^{-} = 12/18$	-415.21
$\Phi_{34}^{-}=3/18$	-368.01	$\Phi_{122}^{-}=12/18$	-415.11
$\Phi_{4_{1}}^{-}=4/18$	-375.87	$\Phi_{123} = 12/18$	-415.40
$\Phi_{42}^{-}=4/18$	-373.72	Φ_{12}^{-} =12/18	-402.78
$\Phi_{4_3}=4/18$	-376.46	$\Phi_{12_5} = 12/18$	-415.35
$\Phi_{5_1}=5/18$	-379.04	$\Phi_{13_1} = 13/18$	-418.18
$\Phi_{5_2} = 5/18$	-379.14	$\Phi_{13_2} = 13/18$	-415.91
$\Phi_{5_3} = 5/18$	-380.27	$\Phi_{13_{3}} = 13/18$	-414.07
$\Phi_{6_1} = 6/18$	-383.47	$\Phi_{13}_{4} = 13/18$	-412.07
Ф _{6_2} =6/18	-385.21	$\Phi_{14_1} = 14/18$	-421.58
Ф _{6_3} =6/18	-382.42	$\Phi_{14_2} = 14/18$	-415.78
Ф _{6_4} =6/18	-388.89	$\Phi_{14_3} = 14/18$	-417.70
$\Phi_{7_1}=7/18$	-393.33	$\Phi_{15_1} = 15/18$	-419.07
$\Phi_{7_2}=7/18$	-391.82	$\Phi_{15_2} = 15/18$	-421.12
$\Phi_{7_3}=7/18$	-389.95	$\Phi_{15_3} = 15/18$	-422.96
$\Phi_{7_4}=7/18$	-386.77	$\Phi_{15_4} = 15/18$	-424.94
$\Phi_{8_1} = 8/18$	-394.72	$\Phi_{16_1} = 16/18$	-428.51
$\Phi_{8_2} = 8/18$	-392.52	$\Phi_{16_2} = 16/18$	-426.63
Φ _{9_1} =9/18	-402.17	$\Phi_{16_3} = 16/18$	-424.41
$\Phi_{9_2}=9/18$	-397.05	$\Phi_{17_1} = 17/18$	-429.81
$\Phi_{9_3}=9/18$	-400.20	$\Phi_{17_2} = 17/18$	-431.72
Φ _{9_4} =9/18	-398.93	$\Phi_{18_1} = 18/18$	-434.29
$\Phi_{10_1} = 10/18$	-406.59		

Table S1 Variations in the energy for $g-C_5N_2$ under different hydrogen coverage by DFT calculation.

T/K	$\Delta G_{H_2}^{gas}(\mathrm{T},\mathrm{P}^0)/\mathrm{eV}$	T/K	$\Delta^{G_{H_2}^{gas}}(\mathrm{T},\mathrm{P}^0)/\mathrm{eV}$
298.15	0.00	700	-0.58
300	-0.003	800	-0.74
400	-0.14	900	-0.90
500	-0.28	1000	-1.07
600	-0.43	1100	-1.23

Table S2 Gibbs free energy variations as a function of temperature for gaseous hydrogen at standard state pressure, $P^0 = 1.0$ atm. Data are taken from the NIST thermodynamic tables.

T/K	$\Delta G_{H_2}^{gas}(\mathrm{T},\mathrm{P}^0)/\mathrm{eV}$	T/K	$\Delta^{G_{H_2}^{gas}}(\mathrm{T},\mathrm{P}^0)/\mathrm{eV}$
298.15	-0.27	700	-0.85
300	-0.41	800	-1.01
400	-0.14	900	-1.17
500	-0.55	1000	-1.34
600	-0.70	1100	-1.50

Table S3 The Gibbs free energy variations as a function of temperature for gaseous oxygen at standard state pressure, $P^0 = 1.0$ atm with respect to its value at 0.0 K.