Supporting information for

Influence of Sodium Diffusion from Substrates on Performance of SnS/CdS Thin-film Solar Cells

Jae Yu Cho, Kyeongrok Shin, Hyo Seok Lee, KrishnaRao Eswar Neerugatti,

and Jaeyeong Heo*

Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea

*Corresponding author email: jheo@jnu.ac.kr

Author	Year	p-n junction	Solar cell properties				
			V oc (∀)	J _{sc} (mA cm⁻²)	FF (%)	η (%)	Ref.
Kang et al.	2017	SnS/CdS	0.269	13.28	45.07	1.61	1
Takano et al.	2018	SnS/MgSnO	0.313	21	33	2.1	2
Lim et al.	2018	SnS/CdS	0.291	17.76	56.8	2.938	3
D. Ding et al.	2018	SnS/TiO₂	0.313	24.8	39	3.0	4
Flores et al.	2019	SnS/CdS	0.488	6.96	41	1.38	5
Gedi et al.	2019	SnS/CdS	0.283	13.9	41.1	1.62	6
Chua et al.	2019	SnS/(Sn,Ge)O₂:N	0.40	12.2	46	2.21	7
Spalatu et al.	2019	SnS/CdS	0.290	17.2	56	2.8	8
Cho et al.	2019	SnS/CdS	0.297	19.4	52.8	3.05	9
Lee et al.	2019	SnS/CdS	0.342	19.8	58.0	3.93	10

Table S1. Device performance of SnS-based TFSCs with efficiencies over 1% since 2017.

Table S2. The elemental analysis by EDX on SLG and Eagle XG substrates

	S	G	Eagle XG		
	wt%	at%	wt%	at%	
Si	41.58	32.20	38.24	29.19	
0	38.08	51.77	42.70	57.22	
Na	9.43	8.92	0.09	0.08	
Са	6.30	3.42	6.36	3.40	
Mg	2.95	2.64	1.18	1.04	
Al	0.99	0.80	11.37	9.04	
Fe	0.29	0.11	0.05	0.02	
Ва	0.19	0.03	-	-	
К	0.10	0.06	-	-	
Ti	0.09	0.04	-	-	

		Solar cell properties					
Sample	Cell no.	V oc (∀)	J_{sc} (mA cm⁻²)	FF (%)	η (%)		
SLG	1	0.290	16.77	49.66	2.418		
	2	0.289	17.01	49.87	2.454		
	3	0.297	16.33	50.24	2.435		
	4	0.299	16.95	49.90	2.533		
	5	0.301	17.30	51.08	2.662		
	Average	0.295	16.87	50.15	2.500		
Eagle XG	1	0.302	21.02	45.56	2.891		
	2	0.302	20.93	46.39	2.931		
	3	-	-	-	-		
	4	0.305	20.68	42.85	2.706		
	5	0.300	19.69	42.31	2.496		
	Average	0.302	20.58	44.28	2.756		

Table S3. Detailed cell parameters for TFSCs with different substrates; the best cell for each sample is in red.

Fig. S1. Areal EDX spectrums for (a) SLG and (b) Eagle XG glass substrates, respectively. The inset shows the blow up of Na peaks for each substrate.

Fig. S2. (a) Na and (b) Sn, S, and Mo contents of each substrate from SIMS analysis.

Fig. S3. (a) Dark *J-V* characteristics and (b) diode characteristics obtained from the best-performing SnS/CdS TFSCs.

References

- 1. J.-y. Kang, S.-M. Kwon, S. H. Yang, J.-H. Cha, J. A. Bae and C.-W. Jeon, *J. Alloys Compd.*, 2017, **711**, 294-299.
- 2. Y. Takano and K. Oyaizu, *Mater. Lett.*, 2018, **228**, 414-417.
- 3. D. Lim, H. Suh, M. Suryawanshi, G. Y. Song, J. Y. Cho, J. H. Kim, J. H. Jang, C.-W. Jeon, A. Cho, S. Ahn and J. Heo, *Adv. Energy Mater.*, 2018, **8**, 1702605.
- 4. D. Ding, T. Rath, L. Lanzetta, J. Manuel Marin-Beloqui and S. A. Haque, *ACS Appl. Energy Mater.*, 2018, **1**, 3042-3047.
- 5. V. E. González-Flores, R. N. Mohan, R. Ballinas-Morales, M. T. S. Nair and P. K. Nair, *Thin Solid Films*, 2019, **672**, 62-65.
- 6. S. Gedi, V. R. Minnam Reddy, T. R. R. Kotte, Y. Park and W. K. Kim, *Appl. Surf. Sci.*, 2019, **465**, 802-815.
- D. Chua, S. B. Kim, P. Sinsermsuksakul and R. Gordon, *Appl. Phys. Lett.*, 2019, **114**, 213901.
- 8. N. Spalatu, J. Hiie, R. Kaupmees, O. Volobujeva, J. Krustok, I. Oja Acik and M. Krunks, *ACS Appl. Mater. Interfaces*, 2019, **11**, 17539-17554.
- 9. J. Y. Cho, S. Sinha, M. G. Gang and J. Heo, *J. Alloys Compd.*, 2019, **796**, 160-166.
- 10. D. Lee, J. Y. Cho, H.-S. Yun, D.-K. Lee, T. Kim, K. Bang, Y. S. Lee, H.-Y. Kim and J. Heo, *J. Mater. Chem. A*, 2019, **7**, 7186-7193.