Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

In-situ decorate Ni₂P nanocrystals co-catalysts on g-C₃N₄ for efficient and stable

photocatalytic hydrogen evolution via a facile co-heating method

Peng Wen^a[‡], Kefei Zhao^a[‡], Hui Li^b[‡], Jiangsheng Li^c, Jing Li^a, Qing Ma^d, Scott M Geyer^{b*}, Lin Jiang^{e*} and Yejun Qiu^{a*}

^aShenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China. E-mail: yejunqiu@hit.edu.cn

^bDepartment of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States. E-mail: <u>geversm@wfu.edu</u>

^cSchool of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China ^dTeaching Center for Experimentation and Innovation Practice, Harbin Institute of Technology, Shenzhen, 518055, China ^eInstitute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China. E-mail: <u>ljiang@suda.edu.cn</u>

Fig. S1 SEM images of (a) bulk $g-C_3N_4$ and (b) $g-C_3N_4$ nanosheets.

Fig. S2 Digital photographs of (a) bulk $g-C_3N_4$ and (b) $g-C_3N_4$ nanosheets.

Fig. S3 XRD patterns of pure Ni₂P, bulk g-C₃N₄, g-C₃N₄ nanosheets and Ni₂P/g-C₃N₄ (self-assembly and insitu) samples.

Fig. S4 XPS survey spectra of bulk g-C₃N₄ sample.

Table S1

The atomic percent of C, N, and O in bulk $g-C_3N_4$ sample.

Element	С	Ν	0
Atomic (%)	42.74	54.18	3.08
Calcd wt (%)	38.83	57.44	3.73

Fig. S5 (a) TEM and (b) HRTEM images of Ni_2P nanocrystals.

Fig. S6 (a) TEM and (b) HRTEM images of $g-C_3N_4/Ni_2P$ composite prepared by self-assembly method.

Fig. S7 N_2 adsorption-desorption isotherms and pore diameter distributions (inset) of bulk g-C₃N₄, g-C₃N₄ NSs and Ni₂P/g-C₃N₄ (self-assembly and in-situ) samples.

Sample	$S_{BET}/m^2 \text{ g}^{-1}$	V _{pore} /cm ³ g ⁻¹	d _{pore} /nm
Bulk g-C ₃ N ₄	9.7	0.04	14.3
g-C ₃ N ₄ Nanosheets	260.3	1.17	19.9
Ni ₂ P/g-C ₃ N ₄ (self- assembly)	78.3	0.39	17.7
Ni ₂ P/g-C ₃ N ₄ (in-situ)	74.9	0.38	19.2

Table S2 Specific surface area, pore volumes and pore diameters of the prepared samples.

Fig. S8 UV-vis absorption spectra of bulk $g-C_3N_4$, $g-C_3N_4$ nanosheets, $Ni_2P/g-C_3N_4$ (in-situ) and $Ni_2P/g-C_3N_4$ (self-assembly) samples.

Fig. S9 (a) XRD pattern of the residue of $Ni_2P/g-C_3N_4$ composite after TGA measurement, (b) TGA curves of $Ni_2P/g-C_3N_4$ composite in flowing air atmospher

Fig. S10 (a) TEM and (b) HRTEM images of Ni₂P/g-C₃N₄ composite prepared by gas-solid method.

Fig. S11 XRD pattern of g-C₃N₄/Ni₂P composite prepared by gas-solid method.

Fig. S12 Time-dependent overall water splitting over Ni₂P/g-C₃N₄ (gas-solid) sample in an aqueous solution of TEOA (10 vol%, 100 mL). A 300 W Xenon arc lamp (Newport) equipped with a UV-off filter ($\lambda > 420$ nm) was applied as the visible light source.

Fig. S13 H₂ evolution rate related to the BET specific surface area of bulk $g-C_3N_4$, $g-C_3N_4$ nanosheets, $Ni_2P/g-C_3N_4$ (self-assembly), and $Ni_2P/g-C_3N_4$ (in-situ) samples.

Fig. S14 Time-dependent overall water splitting over (a) bulk g-C₃N₄, (b) g-C₃N₄ NSs, (c) Ni₂P/g-C₃N₄ (self-assembly) and (d) Ni₂P/g-C₃N₄ (in-situ) in ultrapure water without sacrificial agent under visible light irradiation (λ >420 nm).

Fig. S15 XPS survey spectra of $Ni_2P/g-C_3N_4$ (self-assembly) and $Ni_2P/g-C_3N_4$ (in-situ) samples.

Fig. S16 (a) TEM image and (b) HRTEM image of the $Ni_2P/g-C_3N_4$ composite after water splitting experiment in 1 mM L⁻¹ AgNO₃ aqueous solution under visible-light irradiation.

Fig. S17 Linear sweep voltammetry curves of $g-C_3N_4$ nanosheets and Ni_2P NCs in 0.1 M Na_2SO_4 aqueoussolution.

Table S3 Comparison of the photocatalytic H_2 generation performance of the g- C_3N_4 -based systems loaded with non-noble-metal co-catalysts.

Catalyst	Sacrificial reagent	Light source	Activity	Stability	AQY	Ref. (year)
MoSe ₂ /g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	136.8 μmol h ⁻¹ g ⁻¹	>12 h	N/A	Reference S1 (2018)
Ni ₁₂ P ₅ /g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	535.7 μmol h ⁻¹ g ⁻¹	>30 h	4.67% (420 nm)	Reference S2 (2017)
0.5% Ni-1.0% NiS/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	515 μmol h ⁻¹ g ⁻¹	>12 h	N/A	Reference S3 (2017)
NiS/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	16400 μmol h ⁻¹ g ⁻¹	>40 h	N/A	Reference S4 (2018)
CoP/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	956.8 μmol h ⁻¹ g ⁻¹	>70 h	3.65% (420 nm)	Reference S5 (2018)
FeP/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	177.9 μmol h ⁻¹ g ⁻¹	>9 h	1.57% (420 nm)	Reference S6 (2019)
MoP/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	40.38 μmol h ⁻¹	>15 h	18.3% (420 nm)	Reference S7 (2019)
MoS ₂ /g-C ₃ N ₄	Methanol	300 W Xe lamp $(\lambda > 420 \text{ nm})$	577 μmol h ⁻¹ g ⁻¹	>12 h	N/A	Reference S8 (2018)
Co ₂ P-K ₂ HPO ₄ /g- C ₃ N ₄	TEOA	300 W Xe lamp	27.81 μmol h ⁻¹	>15 h	N/A	Reference S9 (2017)
CoP/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	96.2 μmol h ⁻¹	>12 h	12.4% (420 nm)	Reference S10 (2017)
Ni ₃ C/g-C ₃ N ₄	TEOA	300 W Xe lamp (λ> 420 nm)	15.18 μmol h ⁻¹	>12 h	0.4% (420 nm)	Reference S11 (2018)
Pt/g-C ₃ N ₄	TEOA	300 W Xe lamp	318 µmol h ⁻¹	>16 h	N/A	Reference S12 (2016)
Ni ₂ P/g-C ₃ N ₄	ТЕОА	300 W Xe lamp (λ> 420 nm)	2849.5 μmol h ⁻¹ g ⁻¹	>20 h	18.8% (420 nm)	This Work

Sample	Shell	CN	R (Å)	σ ² (10 ⁻³ Å ²)
	Ni-Ni	2.24 ± 0.03	2.85 ± 0.01	6.4 ± 0.7
Ni ₂ P/g-C ₃ N ₄ (in-situ)	Ni-P	2.18 ± 0.02	2.25 ± 0.01	5.4 ± 0.5
	Ni-N	1.75 ± 0.03	1.88 ± 0.02	5.8 ± 0.8
	Ni-Ni	2.54 ± 0.02	2.81 ± 0.03	4.7 ± 0.6
$N_{12}P/g-C_3N_4$ (self- assemble)	Ni-P	2.43 ± 0.04	2.19 ± 0.02	5.9 ± 0.5
	Ni-Ni	2.46 ± 0.03	2.88 ± 0.02	6.4 ± 0.6
Ni ₂ P Powder	Ni-P	2.38 ± 0.02	2.20 ± 0.01	7.3 ± 1.0
Ni foil	Ni-Ni	12.0	2.88 ± 0.03	5.8 ± 0.3

Table S4 EXAFS fitting parameters corresponding to the fit for as-prepared samples in Fig.S5 b.

CN is the coordination number; R is interatomic distance (the bond length between Ni central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatter distances).

Samples	A ₁ (%)	$ au_1$ (ns)	A ₂ (%)	$ au_2$ (ns)	τ _{ave} (ns)
Bulk g-C ₃ N ₄	35.70	2.5647	64.3	9.8071	8.89
g-C ₃ N ₄ Nanosheets	33.21	2.4804	66.79	8.4798	7.72
$Ni_2P/g-C_3N_4$ (self-assembly)	46.58	2.2417	53.42	8.3902	7.23
$Ni_2P/g-C_3N_4$ (in-situ)	52.11	1.9637	47.89	7.9579	6.69

Table S5 Exponential decay-fitted parameters of fluorescence lifetime for bulk g- C_3N_4 , g- C_3N_4 , nanosheets, $Ni_2P/g-C_3N_4$ (in-situ), and $Ni_2P/g-C_3N_4$ (self-assembly) samples.

Table S6 Corresponding resistance of bulk $g-C_3N_4$, $g-C_3N_4$ nanosheets, $Ni_2P/g-C_3N_4$ (self-assembly), and $Ni_2P/g-C_3N_4$ (in-situ) samples.

Photocatalysts	R _s /Ohm	R _{ct} /10 ⁵ Ohm
Bulk g-C ₃ N ₄	60.9	13.77
g-C ₃ N ₄ Nanosheets	57.3	9.51
Ni_2P/g - C_3N_4 (self-assembly)	56.11	3.36
$Ni_2P/g-C_3N_4$ (in-situ)	55.44	2.58

References

- S1 D. Zeng, P. Wu, W.-J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen and D.-L. Peng, Appl. Catal., B, 2018, 233, 26-34.
- S2 D. Zeng, W.-J. Ong, H. Zheng, M. Wu, Y. Chen, D.-L. Peng and M.-Y. Han, J. Mater. Chem. A, 2017, 5, 16171-16178.
- S3 J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen and X. Li, ACS Appl. Mater. Interfaces, 2017, 9, 14031-14042.
- S4 H. Zhao, H. Zhang, G. Cui, Y. Dong, G. Wang, P. Jiang, X. Wu and N. Zhao, Appl. Catal., B, 2018, 225, 284-290.
- S5 F. Zhang, J. Zhang, J. Li, X. Jin, Y. Li, M. Wu, X. Kang, T. Hu, X. Wang, W. Ren and G. Zhang, J. Mater. Chem. A, 2019, 7, 6939-6945.
- S6 D. Zeng, T. Zhou, W. J. Ong, M. Wu, X. Duan, W. Xu, Y. Chen, Y. A. Zhu and D. L. Peng, ACS Appl. Mater. Interfaces, 2019, 11, 5651-5660.
- S7 J.-Y. Tang, D. Yang, W.-G. Zhou, R.-T. Guo, W.-G. Pan and C.-Y. Huang, J. Catal., 2019, 370, 79-87.
- S8 Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M. O Tade and S. Wang, *Appl. Catal.*, B, 2018, 228, 64-74.
- 89 R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen and X. Li, ACS Sustain. Chem. Eng., 2017, 6, 816-826.
- S10 C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen and R. Xu, Adv. Funct. Mater., 2017, 27.
- S11 K. He, J. Xie, Z.-Q. Liu, N. Li, X. Chen, J. Hu and X. Li, J. Mater. Chem. A, 2018, 6, 13110-13122.
- S12 X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu and Y. Xie, Adv Mater, 2016, 28, 2427-2431.