Supporting Information

Thermally reliable, recyclable and malleable solid-solid phase-change materials through classical Diels-alder reaction for sustainable thermal energy storage

Bo Wu, Yi Wang, zhimeng Liu, Yuan Liu, Xiaowei Fu, Weibo Kong, Liang Jiang, Ye Yuan, Xi Zhang and Jingxin Lei*

State key laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China

Corresponding author: Jingxin Lei. E-mail: jxlei@scu.edu.cn, <u>Tel: +86-02885401152</u>

Samples	PEG	Furan alcohol	tri-HDI	Maleimide	Gel fraction
DC-PCM4K	PEG4K, 40 g	4 g	12 g	7 g	97.13%
DC-PCM8K	PEG8K, 80 g	4 g	12 g	7 g	97.42%
DC-PCM20K	PEG20K, 200g	4 g	12 g	7 g	87.13%

Table S1 Composition and gel fraction of SC-PCM4K, SC-PCM8K, SC-PCM20K andrecyclable DC-PCM8K.

Scheme S1. Synthetic procedure to DC-PCMs by two-step polymerization via Diels-Alder reaction.

Fig. S1 FTIR diagrams of intermediate product and DC-PCM4K.

Fig. S2 Photographic images of intermediate product in chloroform. The obtained intermediate product after the first step is soluble in chloroform, indicating the absence of chemically cross-links.

Dhara ahawaa inamadianta	Melting process		Freezing process			
Phase-change ingredients	$\Delta H_{m} \left(J/g \right)$	$T_m(^{\circ}C)$	$\Delta H_{f}(J/g)$	$T_{f}(^{\circ}C)$	Kei.	
1-octadecanethiol	70.5	36.5	65.1	25.1	1	
PEG	98.2	49.9	102.0	38.4	2	
PEG	106.1	48.5	104.3	43.6	3	
PEG	117.7	51.4	109.0	42.3	4	
PEG	107.5	59.7	102.9	44.0	5	
PEG	40.8	46.4	-	-	6	
MPEG	108.5	57.7	81.6	18.3	7	
PEG	49.5	53.3	-	-	8	
PEG	118.7	56.0	116.2	35.1	9	
PEG	158.2	65.3	157.5	42.6	10	
Hexadecanol	83.0	37.0	82.4	29.3	11	
palmitic acid	39.8	19.2	39.2	18.7	12	
PEG	87.8	71.0	107.2	39.2	Present work	

Table S1 Comparison on thermal storage properties of DC-PCMs and some polymericSSPCMs in the recent literatures.

 ΔH_m and ΔH_f are the melting and freezing latent heat, respectively; Tm and Tf represent the melting and freezing temperatures, respectively.

Fig. S3 Photographic images of a DC-PCM8K film before and after stretching.

Fig. S4 The complex shape of DC-PCM8K can be achieved from single shape through twostep reshaping process, which indicates that the solid-state plasticity show a cumulative effect.

Fig. S5 TG diagrams of pure PEG4K, pure PEG8K and pure PG20K.

Table 3 Thermal stability properties of SA, PEG, PU and PU/SA composite PCMs

Sample	T_o (°C)	T_{max} (°C)	T_e (°C)	CR (%)
PEG4K	339.8	386.5	431.5	1.6
PEG8K	358.2	401.5	428.0	0.37
PEG20K	348.3	387.0	414.6	0.61
DC-PCM4K	282.6	408.7	471.8	10.5
DC-PCM8K	318.9	401.1	470.4	7.6
DC-PCM20K	355.4	394.8	462.7	4.3
Recycled DC-PCM8K	320.3	401.2	471.1	8.9

 T_o is the initial decomposition temperature determined as the temperature of 5 wt% mass loss; T_{max} is the maximum decomposition temperature; T_e is the end decomposition temperature; CR is the mass ratio of char residue at 600°C.

References

- 1 Q. Lian, K. Li, A. A. S. Sayyed, J. Cheng and J. Zhang, J. Mater. Chem. A, 2017, 5, 14562-14574.
- 2 X. Fu, Y. Xiao, K. Hu, J. Wang, J. Lei and C. Zhou, Chem. Eng. J., 2016, 291, 138-148.
- 3 W. Kong, X. Fu, Z. Liu, C. Zhou and J. Lei, Appl. Therm. Eng., 2017, 117, 622-628.

- 4 Z. Liu, X. Fu, L. Jiang, B. Wu, J. Wang and J. Lei, *Sol. Energ. Mat. Sol. C.*, 2016, 147, 177-184.
- 5 C. Chen, W. Liu, H. Wang and K. Peng, Appl. Energ., 2015, 152, 198-206.
- 6 S. Sundararajan, A. Kumar, B. C. Chakraborty, A. B. Samui and P. S. Kulkarni, *SUSTAINABLE ENERGY & FUELS*, 2018, **2**, 688-697.
- 7 P. Xi, X. Gu, B. Cheng and Y. Wang, Energ. Convers. Manage., 2009, 50, 1522-1528.
- 8 Z. Li, W. He, J. Xu and M. Jiang, Sol. Energ. Mat. Sol. C., 2015, 140, 193-201.
- 9 Y. Zhou, D. Sheng, X. Liu, C. Lin, F. Ji, L. Dong, S. Xu and Y. Yang, *Sol. Energ. Mat. Sol. C.*, 2018, **174**, 84-93.
- 10 Y. Xia, H. Zhang, P. Huang, C. Huang, F. Xu, Y. Zou, H. Chu, E. Yan and L. Sun, *Chem. Eng. J.*, 2019, **362**, 909-920.
- 11 X. Huang, J. Guo, Q. An, X. Gong, Y. Gong and S. Zhang, J. Appl. Polym. Sci., 2016, 133, 44065-44073.
- 12 A. Sarı, C. Alkan, A. Biçer and A. Karaipekli, Sol. Energ. Mat. Sol. C., 2011, 95, 3195-3201.