Supporting Information

Clarifying the controversial catalytic active sites of Co_3O_4 for oxygen evolution reaction

Yong Xu,^a Fengchu Zhang,^b Tian Sheng,^c Tao Ye,^b Ding Yi,^b Yijun Yang,^b Shoujie Liu,^c Xi

Wang^{b,*} and Jiannian Yao^{a, c, d,*}

^a School of Chemical Engineering and Technology, Tianjin University; Institute of

Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China

E-mail: jnyao@iccas.ac.cn

^b Key Laboratory of Luminescence and Optical Information, Ministry of Education,

Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044,

P. R. China

E-mail: xiwang@bjtu.edu.cn

^c Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031, P. R.

China

^d Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Fig. S1 The side-view of Co_3O_4 structure and the surface atomic configurations in the (111) plane (right) and the (110)-B plane (left).

Fig. S2 The calculated OER free energy diagram over the (111) plane (a) and (110)-B plane (b) of Co_3O_4 . Free energy diagram for Co_3O_4 (111) and Co_3O_4 (110)-B for OER at zero potential (U = 0).

Fig. S3 Adsorption configurations over the (111) plane of Co_3O_4 , (a) top-view and (b) side-view.

Fig. S4 Adsorption configurations over the (110)-B plane of Co_3O_4 , (a) top-view and (b) side-view.

Fig. S5 (a) Schematic illustration of the synthesis for hexagonal platelets of β -Co(OH)₂-5.0. (b) The suspension of β -Co(OH)₂-5.0 in ethanol. (c) The powder of the β -Co(OH)₂-5.0 hexagonal platelets made by freeze-dried. (d) SEM images of β -Co(OH)₂-5.0 hexagonal platelets at low and high magnification (Inset). (e) TEM image of β -Co(OH)₂-5.0 hexagonal platelet and typical electron diffraction pattern (Inset). (f) SEM image of β -Co(OH)₂-5.0 film fabricated by the hexane/water interfacial self-assembly strategy.

Fig. S6 (a-c) The SEM images of β -Co(OH)₂-2.5, β -Co(OH)₂-5.0 and β -Co(OH)₂-7.5, respectively. (d-f) The corresponding lateral size distributions of β -Co(OH)₂-2.5, β -Co(OH)₂-5.0 and β -Co(OH)₂-7.5.

Fig. S7 AFM images of (a) β -Co(OH)₂-2.5, (b) β -Co(OH)₂-5.0 and (c) β -Co(OH)₂-7.5. The corresponding thickness measurement data of (d) β -Co(OH)₂-2.5, (e) β -Co(OH)₂-5.0 and (f) β -Co(OH)₂-7.5.

Fig. S8 (a) XRD pattern of synthesized pink powder of β -Co(OH)₂-2.5, β -Co(OH)₂-5.0 and β -Co(OH)₂-7.5. (b) XRD patterns of Co₃O₄-2.5, Co₃O₄-5.0 and Co₃O₄-7.5.

Fig. S9 (a) Raman spectra of synthesized Co_3O_4 -2.5, Co_3O_4 -5.0, and Co_3O_4 -7.5 powder. (b) FTIR spectra of synthesized Co_3O_4 -2.5, Co_3O_4 -5.0, and Co_3O_4 -7.5 powder.

Fig. S10 Structure models of Co_3O_4 -2.5, Co_3O_4 -5.0 and Co_3O_4 -7.5 hexagonal platelets and the corresponding ratios (**R**₁-**R**₃) of the (111) planes and {110} planes.

($S_{(111)}$: the area of both top and bottom regular hexagons ((111) planes); $S_{(111)}$: the area of six side rectangles ({110} planes). a_1 - a_3 : the lateral sizes of Co₃O₄-2.5, Co₃O₄-5.0 and Co₃O₄-7.5, respectively. **h**: the thickness of the Co₃O₄-2.5, Co₃O₄-5.0 and Co₃O₄-7.5. R_1 : R_2 : $R_3 = a_1$: a_2 : $a_3 = 1.0: 2.7: 3.5$.)

Fig. S11 The SEM images of Co_3O_4 -5.0 hexagonal platelets on the surface of conductive silicon substrate.

Fig. S12 Dependence relation of the capacitive current vs. scan rate for Co_3O_4 -2.5, Co_3O_4 -5.0 and Co_3O_4 -7.5.

Fig. S13 (a, b) SEM images of $CoAl_2O_4$ -7.5 and $ZnCo_2O_4$ -7.5 at low and high (inset) magnification, respectively. (c) XRD pattern of $CoAl_2O_4$ -7.5 and $ZnCo_2O_4$ -7.5. (d) XPS spectra of the Co 2p in $CoAl_2O_4$ -7.5 and $ZnCo_2O_4$ -7.5.

(The CoAl₂O₄-7.5 and ZnCo₂O₄-7.5 were synthesised with the same method as Co₃O₄-7.5. In synthesis procedure of the precursor, the amounts of CoCl₂·6H₂O with AlCl₃ (Co/Al = 1/2) and CoCl₂·6H₂O with ZnCl₂ (Co/Zn = 2/1) were dissolved to give the total concentrations of 7.5 mM, respectively. The samples were denoted as CoAl₂O₄-7.5 and ZnCo₂O₄-7.5, respectively.)

Fig. S14 (a) Adsorption configurations over the (111) plane of CoO. (b) The calculated OER free energy diagram over the (111) plane of CoO.