Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Sulfurized Synthesis of a New Anode Material for Li-Ion Batteries: Understanding the Role of Sulfurization in Lithium Ion Conversion Reactions and Promoting Lithium Storage Performance

Yanmin Qin,^a Zhongqing Jiang,^b Liping Guo,^a Jianlin Huang,^{a,c} Zhong-Jie Jiang,^{a,c,*} and Meilin Liu^d

^a Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China

^b Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics,
 Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

^c Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China

^d School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA

*Corresponding authors

E-mail: eszjiang@scut.edu.cn (Z.-J. Jiang).

Contents

1. SEM and TEM images of MnO@NC and NC	3
2. TGA curve of MnOS@NSC and XRD pattern after the TGA analysis	.3
3. Raman spectra of MnOS@NSC	.4
4. Rate performance comparison of the MnOS@NSC with other TMC	O-
based anode materials	5
5. Electrochemical performance of NSC and NC	6
6. High resolution XPS spectra of C 1s, O 1s, N 1s, and S 2p in NSC	7
7. Total and projected DOSs of MnO ₂	8
8. Comparison of the charge transfer resistance of MnOS@NSC with oth	ler
MnO ₂ -based electrodes	8
References	9

1. SEM and TEM images of MnO@NC and NC

Figure S1. (a) SEM and (b) TEM images of MnO@NC. (c) TEM image of NC obtained from MnO@NC through the etching of MnO. (d) Schematic illustration of the yolk-shell structure of MnO@NC.

2. TGA curve of MnOS@NSC and XRD pattern after the TGA

analysis

Figure S2. (a) TGA curve of MnOS@NSC, (b) XRD pattern of MnOS@NSC after the TGA analysis.

Calculation of the weight percentage of the NSC in the MnOS@NSC

The weight loss of the MnOS@NSC at the TGA curves in Figure S2a below 150 °C could be attributed to the removal of physically adsorbed water. The weight increment at 420 °C can be attributed to the formation of MnSO₄ and/or Mn₃O₄ ¹ and the subsequent weight loss is the decomposition of the NSC. The weight loss at 700 °C – 830 °C is the transformation of MnSO₄ and/or Mn₃O₄ to Mn₂O₃. The formation of Mn2O₃ after the TGA analysis is demonstrated by the XRD pattern in Figure S2b. The content of NSC in the MnOS@NSC (M_{NSC}) can be estimated based on Eq. S2 (where *M* is the weight percentage, *W* is the molecular weight).

$$\frac{2 \times W_{MnOS}}{100 - M_{H_2O} - M_{NSC}} = \frac{W_{Mn_2O_3}}{M_{Mn_2O_3}}$$
(S1)

3. Raman spectra of MnOS@NSC

Figure S3. Raman spectra of MnOS@NSC.

4. Rate performance comparison of the MnOS@NSC with other TMO-based anode materials

 Table S1. Rate performance comparison of the MnOS@NSC with other TMO-based

 anode materials.

Samples	mass loading	0.1	0.2	0.5	1.0	2.0	5.0	10.0	Reference
	mg cm ⁻²	A g ⁻¹	A g ⁻¹	A g ⁻¹	A g ⁻¹	$A g^{-1}$	A g ⁻¹	A g ⁻¹	
MnOS@NSC	1.5	1339.3	1204.1	1073	928.2	734.7	506.5	290.1	This work
HCF/Mn ₃ O ₄		880	827	750	665	528			2
Mn ₃ O ₄ -rGO	1.2	605	480	385	302	198			3
MnO ₂ @C@		867.6	709.6	597.1	483.5	387.9			4
MnO									
m MnO2-srGO		946.1	852	805	690	643			5
MnO ₂ /rGO		811	624	394.4	278.2	242.4	168.2		6
MnO2@HCSO	1.2	792	699	582	495	411	328		7
Porous Mn ₂ O ₃		1012	809	625	509	411	185		8
G/MnO-800	1.5	1000	930	875	762	604			9
MnO@NC	1.0	762	707	643	570	512			10
MnO/RGO		948	817	575	489				11
p-MnO@N-C	1-1.5	945.5	922	859.5	785.7				12
NTs									
MnO@GS/CNT	1.0	677	600	620	580	530			13
MnO@CNFs	1.2-1.5	817	755	637	520	407			14
MnO@NC		780	650	520	410	335			15
Fe ₂ O ₃ /carbon			790	570	450	300		130	16
α- Fe ₂ O ₃ -CNFs	1.77	430	385	288					17
Fe ₃ O ₄ -C			750	585	518	435	198		18
Fe ₃ O ₄ -graphene	1.0	1045		600	410				19
Mesoporous		712	656	607	582	515			20
NiO									
Porous NiO			510	495	468				21
NiO/C		790		616	461				22
NiO-GNS		1053	1059	967	823				22
CoO-G-C		770	680	570	490	400			23
CoO/C		485	382						24
Co ₃ O ₄ /graphene		990	975	805	600				25
Co ₃ O ₄ @CNT		789	680	505	453		408		26

5. Electrochemical performance of NSC and NC

Figure S4. (a) Charge/discharge profiles of the NSC at 100 mA g^{-1} . (b) Cycling performance and Coulombic efficiency of the NSC at 1000 mA g^{-1} . The inset shows the cycling performance and Coulombic efficiency of the NSC at 100 mA g^{-1} . (c) The cycling performance and Coulombic efficiency of the hollow NSC and hollow NC at 100 mA g^{-1} .

6. High resolution XPS spectra of C 1s, O 1s, N 1s, and S 2p in NSC.

Figure S5. High resolution XPS spectra of (a) C 1s, (b) O 1s, (c) N 1s, and (d) S 2p in NSC.

Table S2. Atomic percentages of C, O, N and S in NSC.						
Sample	C (%)	O (%)	N (%)	S (%)		
NSC	79.53	11.99	6.89	1.59		

7. Total and projected DOSs of MnO₂

Figure S6. Total and projected DOS of Mn and O atoms.

8. Comparison of the charge transfer resistance of MnOS@NSC with

other MnO₂-based electrodes

Figure S7. Comparison of the charge transfer resistance with MnO and other MnO₂-

based electrodes.

Samples	mass loading mg	R _{ct}	Reference
	cm ⁻²		
MnOS@NC-1	1.5	47.64	This work
MnO ₂ /rGO	-	160	27
MnO2@C@MnO	-	150	4
MnO ₂ /3D-rGO	-	690	28
δ-MnO ₂	1.1	69.1	29
MnO ₂ /rGO	-	50.6	6
MnO2@HCSO	1.2	50	7
MnO ₂ @ppy	0.87	77	30
OLC/MnO ₂	3-4	140	31
9.6 MnO ₂	1.0	310	32
MnO@NC	1.4	100	33

Table S3. Comparison of the charge transfer resistance with MnO and other MnO₂-based electrodes.

References

- 1. X. Xu, S. Ji, M. Gu and J. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 20957-20964.
- 2. D. Zhang, G. Li, J. Fan, B. Li and L. Li, Chem. Eur. J., 2018, 24, 9632-9638.
- 3. S. P. Varghese, B. Babu, R. Prasannachandran, R. Antony and M. M. Shaijumon, *J. Alloy. Compd.*, 2019, **780**, 588-596.
- 4. L. Zheng, Y. Liu, J. Lan, Y. Yu and X. Yang, *Chem. Eng. J.*, 2017, **330**, 1289-1296.
- 5. T. Xu, Q. Meng, Q. Fan, M. Yang, W. Zhi and B. Cao, *Chin. J. Chem.*, 2017, **35**, 1575-1585.
- 6. A. Aijaz, J. Masa, S. Rösler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Ed.*, 2016 **55**, 4087–4091.
- J. Zang, J. Ye, H. Qian, Y. Lin, X. Zhang, M. Zheng and Q. Dong, *Electrochim.* Acta, 2018, 260, 783-788.
- B. Zhang, S. Hao, D. Xiao, J. Wu and Y. Huang, *Mater. Design*, 2016, 98, 319-323.
- 9. L. Sheng, S. Liang, T. Wei, J. Chang, Z. Jiang, L. Zhang, Q. Zhou, J. Zhou, L. Jiang and Z. Fan, *Energy Storage Materials*, 2018, **12**, 94-102.
- G. Zhu, L. Wang, H. Lin, L. Ma, P. Zhao, Y. Hu, T. Chen, R. Chen, Y. Wang, Z. Tie, J. Liu and Z. Jin, *Adv. Funct. Mater.*, 2018, 28, 1800003.
- 11. P. Rosaiah, J. Zhu, O. M. Hussain and Y. Qiu, Ceram. Int., 2018, 44, 3077-3084.
- 12. D.-S. Liu, D.-H. Liu, B.-H. Hou, Y.-Y. Wang, J.-Z. Guo, Q.-L. Ning and X.-L. Wu, *Electrochim. Acta*, 2018, **264**, 292-300.
- 13. J. Wang, Q. Deng, M. Li, C. Wu, K. Jiang, Z. Hu and J. Chu, *Nanotechnology*, 2018, **29**, 315403.

- 14. Y. Guo, L. Zheng, J.-L. Lan, Y. Yu and X. Yang, *Electrochim. Acta*, 2018, **269**, 624-631.
- Q. Gou, C. Li, W. Zhong, X. Zhang, Q. Dong and C. Lei, *Electrochim. Acta*, 2019, 296, 730-737.
- Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma and S. Zhu, *Carbon*, 2013, **52**, 565-573.
- 17. L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li, S. Zhang, B. Guo, Z. Lin and X. Zhang, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2672-2679.
- 18. W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo and L.-J. Wan, *Adv. Funct. Mater.*, 2008, **18**, 3941-3946.
- P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang and H. Wang, *Electrochim. Acta*, 2010, 56, 834-840.
- H. Liu, G. Wang, J. Liu, S. Qiao and H. Ahn, J. Mater. Chem., 2011, 21, 3046-3052.
- 21. C. Wang, D. Wang, Q. Wang and H. Chen, J. Power Sources, 2010, 195, 7432-7437.
- 22. Y. Xia, W. Zhang, Z. Xiao, H. Huang, H. Zeng, X. Chen, F. Chen, Y. Gan and X. Tao, *J. Mater. Chem.*, 2012, **22**, 9209–9215.
- M. Zhang, F. Yan, X. Tang, Q. Li, T. Wang and G. Cao, J. Mater. Chem. A, 2014, 2, 5890-5897.
- W. Yuan, J. Zhang, D. Xie, Z. Dong, Q. Su and G. Du, *Electrochim. Acta*, 2013, 108, 506-511.
- 25. H. Kim, D.-H. Seo, S.-W. Kim, J. Kim and K. Kang, Carbon, 2011, 49, 326-332.
- D. Gu, W. Li, F. Wang, H. Bongard, B. Spliethoff, W. Schmidt, C. Weidenthaler, Y. Xia, D. Zhao and F. Schuth, *Angew.Chem. Int. Ed.*, 2015, 54, 7060-7064.
- S. J. Kim, Y. J. Yun, K. W. Kim, C. Chae, S. Jeong, Y. Kang, S. Y. Choi, S. S. Lee and S. Choi, *ChemSusChem*, 2015, 8, 1484-1491.
- 28. H. Liu, Z. Hu, Y. Su, H. Ruan, R. Hu and L. Zhang, *Appl. Surf. Sci.*, 2017, **392**, 777-784.
- 29. A. A. Voskanyan, C.-K. Ho and K. Y. Chan, J. Power Sources, 2019, 421, 162-168.
- Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, *Adv. Funct. Mater.*, 2011, 21, 2366-2375.
- Y. Wang, Z. J. Han, S. F. Yu, R. R. Song, H. H. Song, K. Ostrikov and H. Y. Yang, *Carbon*, 2013, 64, 230-236.
- 32. H. Liu, Z. Hu, H. Ruan, R. Hu, Y. Su, L. Zhang and J. Zhang, *J. Mater. Sci: Mater. Electron.*, 2016, **27**, 11541-11547.
- 33. Y. Qin, Z. Jiang, H. Rong, L. Guo and Z.-J. Jiang, *Electrochim. Acta*, 2018, **282**, 719-727.