## **Supporting Information**

# Negative Electron Affinity Driven Broadband Absorption of Cs<sub>3+n</sub>Pb<sub>n</sub>Sb<sub>2</sub>I<sub>9+3n</sub>/GaN van der Waals Heterostructures

Xiao-dong Yang,<sup>a, b</sup> Hai-bo Shu,<sup>\*, c</sup> Xin-xin Wang,<sup>a, b</sup> Yang Shen,<sup>\*, c</sup> Nai-feng Shen, <sup>a, b, d</sup> Baolin Wang,<sup>e</sup> Jian-guo Wan<sup>\*, a, b</sup> and Guang-hou Wang,<sup>a, b</sup>

<sup>a</sup>National Laboratory of Solid State Microstructures, Department of Physics, Nanjing

University, Nanjing 210093, P. R. China. E-mail: wanjg@nju.edu.cn

<sup>b</sup>Collaborative Innovation Center of Advanced Microstructures, Nanjing University,

Nanjing 210093, P. R. China

<sup>c</sup>College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China

<sup>d</sup>First-class Disciplinesans and High-level University Construction Office, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China <sup>e</sup>College of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China

#### **Corresponding Author**

\*E-mail: <u>shu123hb@gmail.com</u>

\*E-mail: wanjg@nju.edu.cn

Section S1. Test of the convergence of cutoff energy



Fig. S1. Total energies of (a)  $Cs_5Pb_2Sb_2I_{15}/GaN$ , (b)  $Cs_5Pb_2Bi_2I_{15}/GaN$ , and (c)  $Cs_5Pb_2In_2I_{15}/GaN$  heterostructure as a function of cutoff energy.

**Table S1.** Energy convergence test of  $Cs_{3+n}Pb_nSb_2I_{9+3n}/GaN$ ,  $Cs_{3+n}Pb_nBi_2I_{9+3n}/GaN$  and  $Cs_{3+n}Pb_nIn_2I_{9+3n}/GaN$  heterostructures in their PGA-2 structures (n = 2), respectively.  $E_{pe}$  is the total energy per atom of MHP/GaN heterostructures and  $\Delta E_{pe}$  is the difference of the total energy per atom between two neighbouring test points.

| / 00   | $Cs_{3+n}Pb_nS$ | b <sub>2</sub> I <sub>9+3n</sub> /GaN | $Cs_{3+n}Pb_nE$ | Bi <sub>2</sub> I <sub>9+3n</sub> /GaN | Cs <sub>3+n</sub> Pb <sub>n</sub> In <sub>2</sub> I <sub>9+3n</sub> /GaN |                 |  |
|--------|-----------------|---------------------------------------|-----------------|----------------------------------------|--------------------------------------------------------------------------|-----------------|--|
| cutoff | $E_{pe}$        | $\Delta E_{pe}$                       | $E_{pe}$        | $\Delta E_{pe}$                        | $E_{pe}$                                                                 | $\Delta E_{pe}$ |  |
| energy | (eV/atom)       | (meV/atom)                            | (eV/atom)       | (meV/atom)                             | (eV/atom)                                                                | (meV/atom)      |  |
| 250 eV | -4.208032       |                                       | -4.213221       |                                        | -4.172461                                                                |                 |  |

| 300 eV | -4.220490 | -12.458 | -4.225734 | -12.513 | -4.191745 | -19.284 |
|--------|-----------|---------|-----------|---------|-----------|---------|
| 350 eV | -4.221806 | -1.316  | -4.229029 | -3.295  | -4.187411 | 4.334   |
| 400 eV | -4.225630 | -3.824  | -4.233440 | -4.411  | -4.190283 | -2.872  |
| 450 eV | -4.227739 | -2.109  | -4.235553 | -2.113  | -4.191826 | -1.543  |
| 500 eV | -4.227707 | 0.032   | -4.234690 | 0.863   | -4.191882 | -0.056  |
| 550 eV | -4.227421 | 0.286   | -4.234573 | 0.117   | -4.191044 | 0.838   |
| 600 eV | -4.227592 | -0.171  | -4.234621 | -0.048  | -4.191350 | -0.306  |

### Section S2. The calculated band gaps ( $E_g$ ) of CsPbI<sub>3</sub> and GaN using different methods

**Table S2.** The band gaps of  $CsPbI_3$  and GaN calculated using different methods. For the comparison, previous reports on the band gaps of  $CsPbI_3$  and GaN were also listed here.

| E <sub>g</sub> (eV) | PBE   | PBE+SOC | HSE06+SOC | Previous works                        |
|---------------------|-------|---------|-----------|---------------------------------------|
| CsPbI <sub>3</sub>  | 1.449 | 1.227   | 1.701     | 1.67 <sup>1</sup> , 1.73 <sup>2</sup> |
| GaN                 | 1.622 | 1.439   | 3.394     | 3.39 <sup>3</sup> , 3.47 <sup>4</sup> |

#### Section S3. Surface energies of 2D Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub> (M= Pb, Sb, In and Bi) nanosheets

In order to evaluate the surface stability of 2D  $Cs_4PbM_2I_{12}$  (M= Pb, Sb, In and Bi) nanosheets, their relative surface energies ( $\gamma_s$ ) were calculated as follows

$$\gamma_s = (E_T - n_v E_{CsPbI_3} + \sum_i \Delta n_i \mu_i)/2A$$
(S1)

where  $E_T$  and  $E_{CSPbI_3}$  are total energies of 2D Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub> nanosheets and CsPbI<sub>3</sub> in cubic bulk, respectively. *A* is the surface area of nanosheets,  $n_v$  is the number of CsPbI<sub>3</sub> formula unit in 2D nanosheets,  $\mu_i$  is the chemical potential of atomic species *i* (*i* = Pb, Sb, In and Bi), and  $\Delta n_i$  is the difference of atom numbers between the given 2D structure and  $n_v$  bulk CsPbI<sub>3</sub>. As listed in Table S3, calculated surface energies of Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub> (M= Pb, Sb, In and Bi) nanosheets are 44.39, -20.84, 36.44 and 39.63 meV/Å<sup>2</sup>, respectively. The result suggests that the introduction of trivalent cations M (M = Sb, In and Bi) onto the surface layers of 2D CsPbI<sub>3</sub> nanosheets can leads to the reduction of surface energies, which contributes to the stability of 2D CsPbI<sub>3</sub> nanosheets.

|                         | $Cs_4Pb_3I_{12}$ | $Cs_4PbSb_2I_{12}$ | $Cs_4PbIn_2I_{12}$ | $Cs_4PbBi_2I_{12}$ |
|-------------------------|------------------|--------------------|--------------------|--------------------|
| $\gamma_{s} (eV/Å^{2})$ | 44.39            | -20.84             | 36.44              | 39.63              |

**Table S3.** Surface energies ( $\gamma_s$ ) of Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub> (M= Pb, Sb, In and Bi) nanosheets.



Section S4. Band structures of 2D Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub> (M= Pb, Bi, In and Sb) nanosheets

**Fig. S2.** Band structures of (a) pristine  $CsPbI_3$  thin nanosheet,  $CsPbI_3$  thin nanosheets saturated by (b)  $Bi^{3+}$ , (c)  $In^{3+}$  and (d)  $Sb^{3+}$  cations, respectively. The zero of the Fermi energy is set at VBM.



Section S5. Partial charge-density distributions of  $Cs_4PbSb_2I_{12}$  nanosheets

Fig. S3. Charge-density distributions of (a) CBM and (b) VBM of  $Cs_4PbSb_2I_{12}$  nanosheet.





**Fig. S4.** (a) Side view of atomic structure of  $Cs_{3+n}Pb_nM_2I_{9+3n}/GaN$  heterostructure (M = Sb, In and Bi, *n* = 1). Top view of atomic structures of  $Cs_4PbM_2I_{12}/GaN$  heterostructure (M = Sb, In and Bi) with (b) hollow, (c) N-top, and (d) Ga-top interfacial configurations. Cs, I, Ga, N and H atoms are shown in cyan, purple, green, blue and white, respectively. Sb-I and Pb-I polyhedral are colored by orange and black, respectively. The red spheres represent to the trivalent cations, such as Sb<sup>3+</sup>, In<sup>3+</sup> and Bi<sup>3+</sup>, located at the surface of perovskite layer in the heterostructure.



**Fig. S5**. Side view of atomic structures of  $Cs_4PbSb_2I_{12}/GaN(0001)$  heterostructure (PGA-2) with (a) hollow, (b) Ga-top, and (c) N-top interfacial configurations. The insets indicate the corresponding interface atomic configurations.



Fig. S6. Side view of atomic structures of  $Cs_4PbSb_2I_{12}/GaN(000^{1})$  heterostructure (PGB-1)

with (a) hollow, (b) Ga-top, and (c) N-top interfacial configurations. The insets indicate the corresponding interface atomic configurations.

**Table S4**. Interlayer distance *d* of  $Cs_4PbSb_2I_{12}/GaN$ ,  $Cs_4PbIn_2I_{12}/GaN$ , and  $Cs_4PbBi_2I_{12}/GaN$  heterostructures with three different configurations.

| Heterostructure                                         | Configuration | Interlayer distance d (Å) |
|---------------------------------------------------------|---------------|---------------------------|
|                                                         | Hollow        | 2.903                     |
| Cs <sub>4</sub> PbSb <sub>2</sub> I <sub>12</sub> /GaN  | Ga-top        | 3.051                     |
|                                                         | N-top         | 2.956                     |
|                                                         | Hollow        | 2.887                     |
| Cs <sub>4</sub> PbIn <sub>2</sub> I <sub>12</sub> /GaN: | Ga-top        | 3.065                     |
|                                                         | N-top         | 3.056                     |
|                                                         | Hollow        | 2.814                     |
| Cs <sub>4</sub> PbBi <sub>2</sub> I <sub>12</sub> /GaN  | Ga-top        | 3.028                     |
|                                                         | N-top         | 3.088                     |

#### Section S7. Elastic stiffness constants and stability of heterostructures

The elastic stiffness constants  $C_{ij}$  are important parameters to evaluate the structural stability of  $Cs_{3+n}Pb_nM_2I_{9+3n}/GaN$  heterostructures (M = Sb, In and Bi). Taking  $Cs_4PbM_2I_{12}/GaN$ heterostructures (M = Sb, In and Bi) as an example, all of them have a monoclinic symmetry, resulting in thirteen independent elastic constants as follows

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{21} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{31} & C_{32} & C_{33} & 0 & 0 & C_{36} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{45} & C_{55} & 0 \\ C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66} \end{pmatrix}$$
(S2)

For a monoclinic crystal, the criteria for mechanical stability were given by the following equations<sup>5</sup>:

$$C_{11} > 0, C_{22} > 0, C_{33} > 0, C_{44} > 0, C_{55} > 0, C_{66} > 0,$$

$$[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0,$$

$$(C_{33}C_{55} - \frac{C_{35}^2}{2}) > 0, (C_{44}C_{66} - \frac{C_{46}^2}{2}) > 0, (C_{22}C_{33} - 2C_{23}) > 0,$$

$$[C_{22}(C_{33}C_{55} - \frac{C_{35}^2}{2}) + 2C_{23}C_{25}C_{35} - \frac{C_{23}^2}{2}C_{55} - \frac{C_{25}^2}{2}C_{33}] > 0,$$

$$\{2[C_{15}C_{25}(C_{33}C_{12} - C_{13}C_{23}) + C_{15}C_{35}(C_{22}C_{13} - C_{12}C_{23}) + C_{25}C_{35}(C_{11}C_{23} - C_{12}C_{13})]$$

$$- [\frac{C_{15}^2}{(C_{22}C_{33} - \frac{C_{23}^2}{2}) + \frac{C_{25}^2}{(C_{11}C_{33} - \frac{C_{13}^2}{2}) + \frac{C_{35}^2}{(C_{11}C_{22} - \frac{C_{12}^2}{2})] + C_{55}g} > 0$$

$$g = C_{11}C_{22}C_{33} - C_{11}\frac{C_{23}^2}{2} - C_{22}\frac{C_{13}^2}{2} - C_{33}\frac{C_{12}^2}{2} + 2C_{12}C_{13}C_{23}.$$
(S3)

The calculated elastic constants of  $Cs_4PbM_2I_{12}/GaN$  heterostructures (M = Sb, In and Bi) were listed in Table S5. Based on the criteria of mechanical stability, we find that only the hollow configuration of  $Cs_4PbSb_2I_{12}/GaN$  heterostructures is mechanically stable, while the Ga-top and N-top configurations are unstable. Similarly, the Ga-top and N-top configurations of  $Cs_4PbIn_2I_{12}/GaN$  and the hollow configuration of  $Cs_4PbBi_2I_{12}/GaN$  heterostructure are stable.

**Table S5.** Elastic stiffness constants  $C_{ij}$  and stability of Cs<sub>4</sub>PbM<sub>2</sub>I<sub>12</sub>/GaN heterostructures (M = Sb, In and Bi) with different interfacial configurations.

| (N                 | I/m)   | <i>C</i> <sub>11</sub> | <i>C</i> <sub>22</sub> | <i>C</i> <sub>33</sub> | C <sub>66</sub> | $C_{44}$ | C <sub>55</sub> | <i>C</i> <sub>12</sub> | <i>C</i> <sub>13</sub> | <i>C</i> <sub>23</sub> | $C_{46}$ | <i>C</i> <sub>15</sub> | C <sub>25</sub> | C <sub>35</sub> | stability |
|--------------------|--------|------------------------|------------------------|------------------------|-----------------|----------|-----------------|------------------------|------------------------|------------------------|----------|------------------------|-----------------|-----------------|-----------|
|                    | Hollow | 105.06                 | 105.30                 | 30.32                  | 26.11           | 11.27    | 7.93            | 38.54                  | 14.30                  | 9.33                   | 0.48     | 3.40                   | -2.25           | 0.09            | stable    |
| Sb <sup>3+</sup> : | Ga-top | 99.85                  | 100.74                 | 43.05                  | 38.27           | 13.74    | 6.16            | 14.27                  | -4.66                  | 0.24                   | 0.93     | 21.85                  | 18.49           | 4.34            | unstable  |
|                    | N-top  | 66.56                  | 100.14                 | 24.43                  | 29.18           | 13.67    | 7.59            | 44.49                  | -10.12                 | 14.31                  | 0.76     | -                      | 3.12            | -6.61           | unstable  |
|                    | it top |                        |                        |                        |                 |          |                 |                        |                        |                        |          | 11.17                  |                 |                 | unsuore   |
|                    | Hollow | -59.55                 | -88.96                 | -51.20                 | -22.86          | -85.90   | -16.91          | -138.97                | -120.08                | -130.25                | -70.84   | 71.24                  | 75.27           | 54.58           | unstable  |
| In <sup>3+</sup> : | Ga-top | 157.87                 | 169.66                 | 34.51                  | 54.38           | 1.75     | 4.63            | 58.61                  | 12.40                  | 11.14                  | 3.74     | 2.44                   | 6.87            | -2.40           | stable    |
|                    | N-top  | 69.67                  | 72.83                  | 28.79                  | 20.62           | 5.29     | 5.03            | 32.00                  | 11.35                  | 9.08                   | 2.27     | -1.39                  | -2.23           | -1.71           | stable    |
|                    | Hollow | 122.07                 | 127.94                 | 34.96                  | 38.54           | 16.47    | 14.12           | 49.45                  | 14.68                  | 13.48                  | -2.48    | 2.11                   | -2.51           | 2.64            | stable    |
| Bi <sup>3+</sup> : | Ga-top | 178.84                 | 173.05                 | -24.77                 | 50.96           | -36.11   | -69.71          | 76.02                  | 6.48                   | -15.42                 | -7.00    | -4.57                  | 28.54           | 50.44           | unstable  |
|                    | N-top  | 64.65                  | 71.27                  | 20.38                  | 13.17           | 0.90     | 6.34            | 25.03                  | 11.82                  | 6.87                   | 7.00     | 3.51                   | 1.01            | 3.17            | unstable  |



Section S8. Projected density of states of heterostructures

**Fig. S7**. Projected density of states for four different MHP/GaN heterostructures: (a) PGA-2, (b) PGA-1, (c) PGB-2, and (d) PGB-1. The red and black density of states denote the contribution of MHP and GaN sheets, respectively.



Section S9. NEA of GaN systems without and with Cs-adsorbed

**Fig. S8.** Electrostatic potentials (upper panels) and band structures (lower panels) of GaN without Cs absorption in (a) monolayer, (b) bilayer and (c) bulk phase, respectively. The zero of the Fermi energy is set at VBM. Here GaN bulk is simulated by a surface slab model with six GaN bilayers and its bottom surface (N-face) are terminated by artificial hydrogen atoms with fractional charges of 0.75*e*.



**Fig. S9.** Electrostatic potentials (upper panels) and band structures (lower panels) of GaN with the adsorption of Cs at Ga-face in (a) monolayer, (b) bilayer and (c) bulk phase, respectively. The zero of the Fermi energy is set at VBM. Here GaN bulk is simulated by a

surface slab model with six GaN bilayers and its bottom surface (N-face) are terminated by artificial hydrogen atoms with fractional charges of 0.75*e*.



**Fig. S10.** Electrostatic potentials (upper panels) and band structures (lower panels) of GaN with the adsorption of Cs at N-face in (a) monolayer, (b) bilayer and (c) bulk phase, respectively. The zero of the Fermi energy is set at VBM. Here GaN bulk is simulated by a surface slab model with six GaN bilayers and its bottom surface (Ga-face) are terminated by artificial hydrogen atoms with fractional charges of 1.25*e*.



**Fig. S11**. Electrostatic potential distribution, band structures, and optical absorption spectra of Cs-adsorbed GaN ( $11\overline{2}0$ ) nanosheets. (a) Electrostatic potential (upper panel) and band structure (lower pannel) and (c) optical absorption spectrum of Cs-adsorbed trilayer GaN ( $11\overline{2}0$ ) nanosheet. (b) Electrostatic potential (upper panel) and band structure (lower pannel) and (d) optical absorption spectrum of Cs-adsorbed six-layer GaN ( $11\overline{2}0$ ) nanosheet.

Section S10. Work function and electron affinity of Cs<sub>4</sub>PbBi<sub>2</sub>I<sub>12</sub>/GaN and Cs<sub>4</sub>PbIn<sub>2</sub>I<sub>12</sub>/GaN heterostrutures

**Table S6.** Work functions ( $\Phi$ ) and electron affinities ( $\chi$ ) of 2D Cs<sub>4</sub>PbBi<sub>2</sub>I<sub>12</sub>/GaN and Cs<sub>4</sub>PbIn<sub>2</sub>I<sub>12</sub>/GaN heterostructures.

| (eV) | Cs <sub>4</sub> PbBi <sub>2</sub> I <sub>12</sub> /GaN | Cs <sub>4</sub> PbIn <sub>2</sub> I <sub>12</sub> /GaN |
|------|--------------------------------------------------------|--------------------------------------------------------|
| Φ    | 1.29                                                   | 1.46                                                   |
| χ    | -0.18                                                  | -0.35                                                  |



Section S11. Electronic properties of  $Cs_{3+n}Pb_nSb_2I_{9+3n}/GaN$  heterostructures with different *n* values

**Fig. S12.** Band structures and electrostatic potential distributions of  $Cs_{3+n}Pb_nSb_2I_{9+3n}/GaN$  heterostructures with (a, d) n = 0, (b, e) n = 1 and (c, f) n = 2. Vacuum level, Fermi level, and CBM are indicated by red, blue and green lines in electrostatic potential distributions, respectively.



**Fig. S13.** Charge-density distributions of CBM (upper panels) and VBM (lower panels) of  $Cs_{3+n}Pb_nSb_2I_{9+3n}$  /GaN heterostructures with (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5 and (g) n = 6, respectively.

## Section S12. The comparison of PCE among existing heterostructures

| Classification                                                           | PCE (%)  | References | Years |
|--------------------------------------------------------------------------|----------|------------|-------|
| Cs <sub>3+n</sub> Pb <sub>n</sub> Sb <sub>2</sub> I <sub>9+3n</sub> /GaN | 5.1~28.5 | This work  | 2019  |
| Cu <sub>4</sub> O <sub>3</sub> film                                      | 2.25     | [6]        | 2019  |
| AsP/CdSe heterostructure                                                 | 13       | [7]        | 2019  |
| 2D perovskite homologous                                                 | 4.4~6.9  | [8]        | 2017  |
| Zn <sub>1-x</sub> Mg <sub>x</sub> O/MAPbI <sub>3</sub> /Spiro-OMeTAD     | 16.5     | [9]        | 2016  |
| Cu-V-VI films                                                            | 23~27    | [10]       | 2013  |

Table S7. Confirmed existing heterostructures and their PCE (SLME) measured under the

global AM1.5 spectrum (1000 W m<sup>-2</sup>).

#### REFERENCES

- 1 Z. Xiao, W. Meng, J. Wang, D. B. Mitzi and Y. Yan, Mater. Horizons, 2017, 4, 206-216.
- 2 A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, *Science*, 2016, **354**, 92-95.
- 3 M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, *Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe*, John Wiley & Sons: U.K., 2001, p2.
- 4 H. A. Elhamid, Y. Ismail and M. Deen, Opt. Quant. Electron., 2013, 45, 885-899.
- 5 Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu and J. Meng, *Phys. Rev. B*, 2007, 76, 054115.
- 6. A. Živković, A. Roldan and N. H. de Leeuw, Phys. Rev. B, 2019, 99, 035154.
- X. Cai, Y. Chen, B. Sun, J. Chen, H. Wang, Y. Ni, L. Tao, H. Wang, S. Zhu and X. Li, Nanoscale, 2019, 11, 8260-8269.
- 8 J. Qian, Q. Guo, L. Liu, B. Xu and W. Tian, J. Mater. Chem. A, 2017, 5, 16786-16795.
- J. Song, E. Zheng, L. Liu, X. F. Wang, G. Chen, W. Tian and T. Miyasaka, *ChemSusChem*, 2016, 9, 2640-2647.
- 10. L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, Adv. Energy Mater., 2013, 3, 43-48.