Electronic Supplementary Information (ESI)

One-step solution deposition of CsPbBr₃ based on precursor engineering

for efficient all-inorganic perovskite solar cells

Dewei Huang, Pengfei Xie, Zhenxiao Pan, Huashang Rao* and Xinhua Zhong*

College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China

*Corresponding authors

E-mail: raohsh@scau.edu.cn (Dr. H. Rao)

zhongxh@scau.edu.cn (Prof. X. Zhong)

Figure S1. a,b,c) The photographs of various precursor formulations with different concentration. d) The solubility test of CsAc in pure DMSO. **Control group:** equimolar ratio of CsBr and PbBr₂ dissolved in pure DMSO; **MAAc group:** equimolar ratio of CsBr and PbBr₂ dissolved in a mixture solution of MAAc and DMSO (1:7, vol/vol); **CsAc/MAAc group**: equimolar ratio of CsAc, MABr and PbBr₂ dissolved in a mixture solution of MAAc and DMSO (1:7, vol/vol); **CsAc/MAAc and DMSO** (1:7, vol/vol).

Figure S2. XRD patterns (a) and absorption spectra (b) of the CsPbBr₃ films prepared with different precursors.

Figure S3. Top-view SEM images of perovskite film prepared with CaAc/MAAc-based

precursor after the first stage annealing of low temperature (45 $^{\circ}$ C).

Figure S4. (a) Top-view of the CsPbBr₃ film deposited with 5 nm-thick CuPc.

Figure S5. Dark *I–V* characteristics for FTO/TiO₂/CsPbBr₃/PCBM/Au devices.

Sample	(100)	(110)	(210)	(200) _{FTO}
160 °C	15.29	21.23	30.77	37.97
45 °C	15.19	21.55	30.63	37.97
MAPbBr ₃	15.11	21.69	30.21	37.97

Table S1. The peak parameters extracted from XRD patterns in Figure 2b.

Table S2. The parameters extracted from the time-resolved PL spectra based on the CsPbBr₃ films prepared with different precursors.

Sample	$ au_{\mathrm{avg}} [\mathrm{ns}]$	τ_1 [ns]	$ au_2$ [ns]	A ₁ [%]	A ₂ [%]
control	1.5	0.27	1.94	68.9	31.1
MAAc	2.5	0.97	2.72	32.1	67.9
CsAc/MAAc	6.2	2.68	7.62	53.3	46.7

Table S3. The average values of photovoltaic parameters and maximum PCE, which are extracted from measured *J*-*V* curves at one sun illumination (100 mW cm⁻², AM 1.5G).

Device	J _{SC} [mA cm ⁻²]	V _{OC} [V]	FF	PCE [%]	Maximun PCE [%]
control	4.59	0.86	0.645	2.53	2.81
MAAc	5.63	1.09	0.665	4.07	4.79
CsAc/MAAc	7.19	1.23	0.731	6.48	7.37

Table S4. The photovoltaic parameters extracted from J-V curves, which were recorded under forward/reverse voltage scanning directions at one sun illumination (100 mW cm⁻², AM 1.5G).

Device	J _{SC} [mA cm ⁻²]	V _{oc} [V]	FF	PCE [%]
Reverse	7.40	1.22	0.814	7.37
Foward	7.42	1.21	0.754	6.79

SCLC measurement

The space charge limited current (SCLC) measurements use the devices of FTO/TiO₂/CsPbBr₃/PCBM/Au. The PCBM and Au layer were prepared by spin-coating PCBM chlorobenzene solution (10.0 mg/mL) and by thermal evaporation, respectively. *I-V* characteristics of those devices were measured by Keithley 2401 under dark and vacuum. The trap density (n_{trap}) of samples were calculated by the equation:^{1,2}

$$V_{TEF} = \frac{e n_{trap} L^2}{2\varepsilon_0 \varepsilon} \tag{1}$$

where *e* is the elementary charge, *L* is the thickness of CsPbBr₃ film, ε_0 is permittivity of vacuum and ε (16.46) is dielectric constant of CsPbBr₃.³ The trap-filled limit voltage (*V*_{TFL}) was obtained from *I-V* curve.

References

- 1 A. Rose, Phys. Rev., 1955, 97, 1538.
- 2 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, *Science*, 2015, **347**, 967–970.
- 3 J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian and H. Sun, *Adv. Opt. Mater.*, 2017, **5**, 1700157.