Supporting information

Figure S1. (a) XRD patterns of bare NCM powder and LiNbO₃-coated NCM powder. (b) TEM image of LiNbO₃-coated NCM. Scale bar is 50 nm.

Figure S2. Surface TEM and EDS mapping images of LiNbO₃-coated secondary and single particle of NCM electrode.

Figure S3. Cross-section SEM images of cathode and electrolyte composite pellet (1:1, v/v).

Figure S4. In-situ SEM image during chemical reaction between bare NCM and argyrodite without external pressure in vacuum state. (Left) Fresh composite pellet of bare NCM and argyrodite. (Right) SEM image after 5 days. Yellow arrows indicate microstructural changes. Scale bar is 10 micrometer.

Figure S5. Difference in XPS peak (solid line: surface versus pristine electrolyte; dash-dot line: etched region versus surface) for (a) bare NCM and (b) LiNbO₃-coated NCM with argyrodite electrolyte.

Figure S6. P 2p XPS spectra of aged cell with bare NCM or LiNbO₃-coated NCM at the surface (solid line) and after etching (dashed line) compared with that of pristine argyrodite.

Bare	Values as a function of time									
NCM+SE	0 h	1.4 h	5.6 h	12.6 h	19.6 h	26.6 h	33.6 h	40.6 h		
$R_{e}(\Omega)$	21.69	27.86	35.78	44.89	51.62	56.62	61.10	64.72		
R _{e,gb} (Ω)	50.64	61.35	84.09	122.69	162.59	204.12	244.93	284.47		
Q _e (F*cm ⁻ ^{1*} s ^{α-1})	9.24E-7	6.06E-7	4.67E-7	3.70E-7	3.22E-7	2.98E-7	2.80E-7	2.68E-7		
α _e	0.520	0.542	0.540	0.531	0.521	0.511	0.503	0.496		
C _e (F)	1.22E-7	1.07E-7	8.27E-8	6.05E-8	4.79E-8	4.06E-8	3.60E-8	3.25E-8		
$R_i(\Omega)$	27.51	34.49	43.46	52.35	58.36	62.51	66.07	68.92		
$R_{i,gb}(\Omega)$	273.99	273.53	339.07	415.81	488.02	555.46	613.79	663.25		
Q _i (F*cm ⁻ ^{1*} s ^{α-1})	6.21E-7	4.29E-7	3.45E-7	2.96E-7	2.73E-7	2.65E-7	2.59E-7	2.55E-7		
α	0.515	0.537	0.534	0.525	0.516	0.506	0.498	0.491		
C _i (F)	2.45E-7	1.82E-7	1.38E-7	1.06E-7	8.75E-8	7.72E-8	6.88E-8	6.21E-8		
Q _{cpe} (F*cm ⁻ ¹ *s ^{α-1})	0.03965	0.05099	0.03804	0.02984	0.02527	0.0222	0.02006	0.0184		
acpe	0.769	0.682	0.696	0.700	0.700	0.698	0.696	0.694		
T (cm)	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318		
L (H*cm ²)	3.73E-6	4.04E-6	4.60E-6	5.27E-6	5.82E-6	6.34E-6	6.84E-6	7.27E-6		
A (cm ²)	1.327	1.327	1.327	1.327	1.327	1.327	1.327	1.327		

Table S1. EIS fitting parameter for bare NCM and argyrodite composite

LiNbO ₃	Values as a function of time								
NCM+SE	0 h	1.4 h	5.6 h	12.6 h	19.6 h	26.6 h	33.6 h	40.6 h	
$R_{e}(\Omega)$	21.29	19.15	20.98	22.72	23.12	23.84	24.42	24.60	
$R_{e,gb}(\Omega)$	296.70	304.88	323.03	343.84	360.41	373.29	385.19	395.99	
Q _e (F*cm ⁻ ¹ *s ^{α-1})	1.06E-06	1.29E-06	1.25E-06	1.20E-06	1.20E-06	1.19E-06	1.17E-06	1.17E-06	
ae	0.440	0.419	0.420	0.422	0.421	0.421	0.421	0.420	
C _e (F)	1.78E-7	1.80E-7	1.86E-7	1.92E-7	2.01E-7	2.06E-7	2.06E-7	2.10E-7	
$R_i(\Omega)$	17.10	20.34	20.55	20.40	20.55	20.26	20.18	20.55	
$R_{i,gb}(\Omega)$	219.22	218.66	226.99	233.04	234.09	236.77	239.09	239.92	
Q _i (F*cm ⁻ ^{1*} s ^{α-1})	1.32E-06	1.19E-06	1.25E-06	1.31E-06	1.31E-06	1.36E-06	1.37E-06	1.36E-06	
α	0.424	0.434	0.427	0.420	0.418	0.414	0.412	0.412	
C _i (F)	1.37E-7	1.37E-7	1.36E-7	1.32E-7	1.27E-7	1.28E-8	1.25E-7	1.24E-7	
Q _{cpe} (F*cm ⁻ ¹ *s ^{α-1})	0.02937	0.03063	0.03099	0.03160	0.03265	0.03329	0.03384	0.03448	
acpe	0.805	0.796	0.799	0.800	0.796	0.795	0.793	0.790	
T (cm)	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318	0.0318	
L (H*cm ²)	6.90E-06	6.77E-06	6.89E-06	6.99E-06	7.06E-06	7.11E-06	7.17E-06	7.16E-06	
A (cm ²)	1.327	1.327	1.327	1.327	1.327	1.327	1.327	1.327	

Table S2. EIS fitting parameter for LiNbO₃-coated NCM and argyrodite composite

References

- 1. Kato, Y, *et al.* High-power all-solid-state batteries using sulfide superionic conductors. *Nat. Energy* **1**, 16030 (2016).
- 2. Manthiram, A, Yu, X, Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. *Nat. Rev. Mater.* **2**, 16103 (2017).
- 3. Zhang, *Z*, *et al*. New horizons for inorganic solid state ion conductors. *Energy Environ*. *Sci.* **11**, 1945-1976 (2018).
- 4. Kamaya, N, et al. A lithium superionic conductor. Nat. Mater. 10, 682 (2011).
- 5. Seino, Y, Ota, T, Takada, K, Hayashi, A, Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. *Energy Environ. Sci.* **7**, 627-631 (2014).
- 6. Wang, Y, *et al.* Design principles for solid-state lithium superionic conductors. *Nat. Mater.* **14**, 1026 (2015).
- 7. Bachman, JC, *et al.* Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. *Chem. Rev.* **116**, 140-162 (2015).
- 8. Zhang, W, *et al.* Degradation mechanisms at the Li₁₀GeP₂S₁₂/LiCoO₂ cathode interface in an all-solid-state lithium-ion battery. *ACS Appl. Mater. Interfaces* **10**, 22226-22236 (2018).
- 9. Han, X, *et al.* Negating interfacial impedance in garnet-based solid-state Li metal batteries. *Nat. Mater.* **16**, 572 (2017).
- 10. Zhu, Y, He, X, Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. *ACS Appl. Mater. Interfaces* 7, 23685-23693 (2015).
- 11. Wenzel, S, *et al.* Direct observation of the interfacial instability of the fast ionic conductor $Li_{10}GeP_2S_{12}$ at the lithium metal anode. *Chem. Mater.* **28**, 2400-2407 (2016).
- 12. Koerver, R, *et al.* Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. *Chem. Mater.* **29**, 5574-5582 (2017).
- 13. Walther, F, *et al.* Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. *Chem. Mater.* **31**, 3745-3755 (2019).
- 14. Auvergniot, J, Cassel, A, Ledeuil, J-B, Viallet, V, Seznec, V, Dedryvère, Rm. Interface stability of argyrodite Li₆PS₅Cl toward LiCoO₂, LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂, and LiMn₂O₄ in bulk all-solid-state batteries. *Chem. Mater.* **29**, 3883-3890 (2017).
- 15. Xiao, Y, Miara, LJ, Wang, Y, Ceder, G. Computational Screening of Cathode Coatings for Solid-State Batteries. *Joule*, (2019).
- 16. Deiseroth, HJ, *et al.* Li₆PS₅X: a class of crystalline Li-rich solids with an unusually high Li⁺ mobility. *Angew. Chem. Int. Ed.* **47**, 755-758 (2008).
- 17. Rao, RP, Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. *Phys. Status Solidi A* **208**, 1804-1807 (2011).
- 18. Ohta, N, *et al.* LiNbO₃-coated LiCoO₂ as cathode material for all solid-state lithium secondary batteries. *Electrochem. Commun.* **9**, 1486-1490 (2007).
- 19. Asano, T, Yubuchi, S, Sakuda, A, Hayashi, A, Tatsumisago, M. Electronic and ionic conductivities of LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂-Li₃PS₄ positive composite electrodes for all-solid-state lithium batteries. *J. Electrochem. Soc.* **164**, A3960-A3963 (2017).
- 20. Yoon, K, Kim, J-J, Seong, WM, Lee, MH, Kang, K. Investigation on the interface between $Li_{10}GeP_2S_{12}$ electrolyte and carbon conductive agents in all-solid-state lithium battery. *Sci. Rep.* **8**, (2018).

- 21. Jung, SH, *et al.* Li₃BO₃-Li₂CO₃: Rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. *Chem. Mater.* **30**, 8190-8200 (2018).
- 22. Siroma, Z, Sato, T, Takeuchi, T, Nagai, R, Ota, A, Ioroi, T. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery. *J. Power Sources* **316**, 215-223 (2016).
- 23. Siroma, Z, Fujiwara, N, Yamazaki, S-i, Asahi, M, Nagai, T, Ioroi, T. Mathematical solutions of comprehensive variations of a transmission-line model of the theoretical impedance of porous electrodes. *Electrochim. Acta* **160**, 313-322 (2015).
- 24. Jamnik, J, Maier, J. Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. *J. Electrochem. Soc.* **146**, 4183-4188 (1999).
- 25. Kaiser, N, Spannenberger, S, Schmitt, M, Cronau, M, Kato, Y, Roling, B. Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte. *J. Power Sources* **396**, 175-181 (2018).
- 26. Wenzel, S, Sedlmaier, SJ, Dietrich, C, Zeier, WG, Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. *Solid State Ionics* **318**, 102-112 (2018).
- 27. Benaissa, K, Ashrit, P, Bader, G, Girouard, FE, Truong, V-V. Electrical and optical properties of LiNbO₃. *Thin Solid Films* **214**, 219-222 (1992).
- 28. Irvine, JT, Sinclair, DC, West, AR. Electroceramics: characterization by impedance spectroscopy. *Advanced Materials* **2**, 132-138 (1990).
- 29. Koerver, R, *et al.* Chemo-mechanical expansion of lithium electrode materials–on the route to mechanically optimized all-solid-state batteries. *Energy Environ. Sci.* **11**, 2142-2158 (2018).
- 30. Luo, P, *et al.* Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System. *ACS Appl. Mater. Interfaces* **9**, 2500-2508 (2017).
- Karthikeyan, R, Thangaraju, D, Prakash, N, Hayakawa, Y. Single-step synthesis and catalytic activity of structure-controlled nickel sulfide nanoparticles. *CrystEngComm* 17, 5431-5439 (2015).
- 32. Lin, L, Liang, F, Zhang, K, Mao, H, Yang, J, Qian, Y. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. *Journal of Materials Chemistry A* **6**, 15859-15867 (2018).
- Auvergniot, J, Cassel, A, Foix, D, Viallet, V, Seznec, V, Dedryvère, R. Redox activity of argyrodite Li₆PS₅Cl electrolyte in all-solid-state Li-ion battery: An XPS study. *Solid State Ionics* 300, 78-85 (2017).