Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

A Novel Single Atom Catalyst for CO Oxidation at Humid Environmental Conditions:

Ni-Embedded Divacancy Graphene

Quanguo Jiang,^a Jianfeng Zhang,^{*a} Huajie Huang,^a Yuping Wu,^a and Zhimin Ao^{*b}

^aCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China

^bGuangzhou Key Laboratory Environmental Catalysis and Pollution Control,

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control,

Institute of Environmental Health and Pollution Control, School of Environmental

Science and Engineering, Guangdong University of Technology

*Corresponding authors. E-mail address: jfzhang@hhu.edu.cn,

zhimin.ao@gdut.edu.cn

Supplementary Results

Fig. S1 The most stable structure of defective graphene with carbon divacancy, where the letters indicate the possible adsorption positions of hollow site, top site and bridge site for Ni atom.

Fig. S2 The atomic structures of defective graphene with Ni atoms adsorbed at B_1 (a), Hol_1 (b), Hol_3 (c) and Hol_4 (d) are shown in the up panel. The Ni atom on T1 site simultaneously diffused to B1 site, while the Ni atom on T₂, T₂, T₂, B₂, B₃, B₄, B₅, and Hol_2 sites simultaneously diffused to Hol_1 site after Geometry Optimization. The pathways for the diffusion of the adsorbed Ni atom from B₁ to Hol_1 (e), from Hol_3 to Hol_1 (f), and from Hol_1 to Hol_4 (g) are shown in the down panel.

Theoretical Details of Micro-kinetic Analysis

The most favorable reaction pathway (TER path) includes the two chemical adsorbed CO molecules and one physical adsorbed O_2 molecule. After adsorption of the first CO molecule on the bare Ni site, the second CO also possibly adsorbs on the

Ni site. In addition, the Ni site after adsorption of the first and the second CO are both possible occupied by O_2 molecule and thus deactivate the Ni site. Here, the labels "*" and "‡" represent the bare Ni site and Ni site with the first adsorbed CO molecule. The competing adsorption of O_2 on these two kinds of sites is displayed as Equation (5) and (6):

$$CO(g) + * \xrightarrow{K_{co}^*} OC^*$$

$$K^{\dagger}$$
(1)

$$CO(g) + \stackrel{*}{\stackrel{}{\to}} \stackrel{K_{co}}{OC^{\dagger}}$$

$$(2)$$

$$O_{2}^{\dagger}(g) + OC^{*} + OC^{\dagger} \xrightarrow{\kappa_{1}} OC^{*} OOCO^{\dagger}$$
(3)

$$OC^* OOCO^{\dagger} \xrightarrow{\kappa_2} 2CO_2(g)^{\dagger} + *$$
 (4)

$$O_2(g) + * \to O_2^*$$
 (5)

$$O_2(g) + \stackrel{K_{O_2}^{\dagger}}{\to} O_2^{\dagger}$$
(6)

The adsorption of CO and O₂ can be assumed in kinetic equilibrium, and the coverage of CO (θ_{co}^* and θ_{co}^{\dagger}) and O₂ (θ_{02}^* and θ_{02}^{\dagger}) at different sites with the partial pressures of P_{co} and P_{02} are obtained by the following equations:

$$\theta_{co}^* = K_{co}^* P_{CO} \theta_* \tag{7}$$

$$\theta_{co}^{\dagger} = K_{co}^{\dagger} P_{CO} \theta_{\dagger} \tag{8}$$

$$\theta_{O_2}^* = K_{O_2}^* P_{O_2} \theta_* \tag{9}$$

$$\theta_{O_2}^{\,\dagger} = K_{O_2}^{\,\dagger} P_{O_2} \theta_{\,\dagger} \tag{10}$$

The equilibrium constants are obtained by the following equations:

$$K_{co}^{*} = \exp\left[\frac{-\left(\Delta E_{CO}^{*} - T\Delta S_{CO}\right)}{k_{B}T}\right]$$
(11)

$$K_{co}^{\dagger} = \exp\left[\frac{-\left(\Delta E_{CO}^{\dagger} - T\Delta S_{CO}\right)}{k_B T}\right]$$
(12)

$$K_{o_{2}}^{*} = \exp\left[\frac{-\left(\Delta E_{o_{2}}^{*} - T\Delta S_{o_{2}}\right)}{k_{B}T}\right]$$
(13)

$$K_{o_{2}}^{\dagger} = \exp\left[\frac{-\left(\Delta E_{o_{2}}^{\dagger} - T\Delta S_{o_{2}}\right)}{k_{B}T}\right]$$
(14)

where ΔE_{CO}^{*} , ΔE_{CO}^{\dagger} , $\Delta E_{O_{2}}^{*}$ and $\Delta E_{O_{2}}^{\dagger}$ are the adsorption energies of CO and O₂ on site * and site \ddagger , and ΔS_{CO} and ΔS_{O2} represent the entropy change upon CO and O₂ adsorption, respectively.

For reaction (3) and (4), the backward reactions are negligible due to the much higher reaction barriers than those of the corresponding forward reactions. The rate constant k for reaction (3) and (4) can be calculated based on transition state theory:

$$k = \frac{k_B T}{h} \times \frac{Q_{TS}}{Q_A Q_B} \times exp^{[i0]} \left[-\left(\frac{\Delta E_{bar}}{k_B T}\right) \right]$$
(15)

where Q_{TS} is the transition state partition function, Q_{A} and Q_{B} are the partition functions. The ΔE_{bar} represents the reaction barrier for the corresponding step. Finally, we can obtain the rate constant $k_1 = 1.13 \times 10^7$ /s and $k_2 = 7.90 \times 10^7$ /s.

Campbell's degree of rate control (DRC) analysis¹ was used to identify the elementary step that controls the overall CO oxidation rate. The degree of rate control coefficient $\chi_{RC,i}$ for a specific elementary step (*i*) is calculated as following:

$$\chi_{RC,i} = \left(\frac{\partial lnr}{\partial lnk_i}\right)_{k_j \neq i'^{K_i}}$$
(16)

where *r* is the overall reaction rate, k_i is the forward rate constant and K_i is the equilibrium constant for step *i*.

The coverage of MS (θ_{MS}) can be calculated by applying the 'steady-state' approximation:

$$\frac{d\theta_{MS}}{dt} = k_1 P_{0_2} \theta_{co}^* \theta_{co}^\dagger - k_2 \theta_{MS} = 0$$
(17)

$$\theta_{MS} = \frac{k_1}{k_2} P_{O_2} \theta_{co}^* \theta_{co}^* \tag{18}$$

The sum of coverage of adsorbents (CO, O₂ and MS) and free active sites should be 1 for both site * and \ddagger site, respectively. Then, we can calculate θ_* and θ_{\ddagger} as follows:

$$\theta_* + \theta_{co}^* + \theta_{O_2}^* + \theta_{MS} = 1 \tag{19}$$

$$\theta_{\ddagger} + \theta_{co}^{\dagger} + \theta_{0}^{\dagger}_{2} = 1 \tag{20}$$

$$\theta_{\dagger} = \frac{1}{1 + K_{C0}^{\dagger} P_{C0} + K_{0_2}^{\dagger} P_{0_2}}$$
(21)

$$\theta_{*} = \frac{1}{1 + K_{C0}^{*}P_{C0} + K_{02}^{*}P_{02} + \frac{k_{1}}{k_{2}} \frac{K_{C0}^{*}K_{C0}^{*}P_{02}(P_{C0})^{2}}{k_{2}1 + K_{C0}^{*}P_{C0} + K_{02}^{*}P_{02}}$$
(22)

Based on the thermodynamic condition of T = 298 K, $P_{CO} = 0.01$ bar, $P_{O2} = 0.21$ bar as applied in the reference,² the maximum formation rate for CO₂ can be calculated as following:

$$r_{CO_2} = 2k_2\theta_{MS} = 2k_1K_{CO}^*K_{CO}^*K_{CO}^*P_{O_2}(P_{CO})^2\theta_*\theta_{\dagger} = 1.06 \times 10^7/s$$

Where step R3 (the formation of OCOOCO intermediate) is the rate determining step according to Campbell's degree of rate control analysis.

The elementary steps considered for CO oxidation following ER mechanism (Figure 6) are summarized as following:

$$\mathcal{CO}(g) + * \xrightarrow{K_{co}^*} \mathcal{OC}^*$$
(23)

$$O_2(g) + * \xrightarrow{K_{O_2}} O_2^*$$
 (24)

$$O_{2}^{*} + CO^{\dagger}(g) \xrightarrow{k_{1}} CO_{2}^{\dagger}(g) + O^{*}$$
(25)

$$0^* + C0^{\dagger}(g) \xrightarrow{\kappa_2} C0^{\dagger}_2(g) + *$$
 (26)

The coverage of the intermediate species, i.e. O^{*} is obtained by applying steadystate approximation. The sum of coverage of adsorbents (CO, O₂ and O^{*}) and free active sites should be 1 for site *. Hence, θ_* is calculated as following for ER mechanism

$$\theta_{*} + \theta_{co}^{*} + \theta_{0_{2}}^{*} + \theta_{o}^{*} = 1$$
(27)

$$\theta_{*} = \frac{1}{1 + K_{C0}^{*} P_{C0} + K_{0_{2}}^{*} P_{0_{2}} + \frac{k_{1}}{k_{2}} K_{0_{2}}^{*} P_{0_{2}}}$$
(28)

The maximum rate for CO_2 formation following ER mechanism can be obtained as following:

$$r_{CO_2} = 2k_1\theta_{O_2}^*P_{CO} = 9.6 \times 10^{-60}/s$$

Here, step R3, i.e. formation of O^* and physisorbed CO_2 , is the rate determining step according to Campbell's degree of rate control theory.

Reference:

- (1) C. Stegeimann, A. Andreasen and C. T. Campbell, J. Am. Chem. Soc., 2009, 131, 8077-8082.
- (2) H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 2012, 134, 1560-1570.