Supporting Information

Ultrathin Defect-Rich Co₃O₄ Nanosheets Cathode for High-Energy

and Durable Aqueous Zinc Ion Battery

Yongzhuang Lu,^a Jing Wang,^b Siqi Zeng,^a Lijun Zhou,^a Wei Xu,^a Dezhou Zheng,^{a*} Jie Liu,^c Yinxiang Zeng, ^{b*} and Xihong Lu^{a,b*}

^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.
R. China. E-mail: <u>523906991@qq.com</u> (D. Zheng);
^bMOE MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: <u>zengyinx@mail2.sysu.edu.cn</u> (Y. Zeng); <u>luxh6@mail.sysu.edu.cn</u> (X. Lu)
^cCollege of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R.

China

Experimental Section:

Preparation of Co₃O₄ and R-Co₃O₄ nanosheets: The synthesis of pristine Co₃O₄ included the hydrothermal process and a subsequent calcination. Firstly, a piece of carbon cloth ($3 \times 2 \text{ cm}^2$) was immerged in ethanol and sonicated for 15 min. 0.14 mol/L Co(NO₃)₂·6H₂O, 0.28 mol/L NH₄F, and 0.71 mol/L urea were dissolved in distilled water to form a homogeneous solution. The solution was then transferred into a Teflon-lined autoclave and a piece of carbon cloth was then immersed into the solution. The autoclave was maintained at 120 °C for 6 h, and then naturally cool down at room temperature. The as-prepared sample was annealed in air at 350 °C for 2 h to obtain Co₃O₄. Further, the R-Co₃O₄ nanosheets were obtained by a solvothermal reduction method in ethylene glycol at 180 °C for 24 h. The mass loadings of pristine Co₃O₄ and R-Co₃O₄ nanosheets samples were 4.21 mg cm⁻² and 3.86 mg cm⁻² respectively, which were obtained by electronic scales (BT25S, 0.01 mg).

Material Characterization: The morphologies and compositions of the electrode materials were characterized using field-emission SEM (FESEM, JSM-6330F), transmission electron microscopy (TEM, FEI Tecnai G2 F30), Raman spectroscopy (Renishaw inVia), XPS (XPS, Nexsa, Thermo FS), AFM (SPM-9500J3) and XRD (Rigaku D-MAX 2200). The Co L-edge XANES spectra were collected at the photoemission end-station at beamline BL10B in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The surface area of the samples was calculated from nitrogen adsorption/desorption isotherms at 77 K that were obtained using a Brunauer–Emmett–Teller test (JW-BK100A).

Electrochemical Measurement: CV, charge-discharge measurements, and electrochemical impedance spectroscopy were conducted using an electrochemical workstation (PARSTAT MC). The electrochemical studies of individual electrodes were applied in a three-electrode cell, with a carbon rod counter electrode and a Hg/HgO reference electrode, in 6 M KOH saturated with $Zn(Ac)_2$ (~ 0.5 M $Zn(Ac)_2$) aqueous solution. The Zn//Co batteries with Co_3O_4 and $R-Co_3O_4$ cathodes were assembled using zinc plate anode with 6 M KOH saturated with $Zn(Ac)_2$ as electrolyte.

Calculations:

The areal capacity (C_a) and specific capacity (C_s) were calculated from the galvanostatic curve using the following equations:

$$C_{a} = \frac{\int_{0}^{\Delta t} I dt}{S}$$
(1)
$$C_{s} = \frac{\int_{0}^{\Delta t} I dt}{m}$$
(2)

Where C_a is the areal capacity (mAh cm⁻²), C_s is the specific capacity (mAh g⁻¹), I (mA) is the applied discharging current, Δt (h) is the discharging time, S (cm²) is the area of the cathode and m (g) is the mass loading of the cathode.

Specific energy density E and specific power density P of the cell were obtained from the following equations:

$$E = \int_{V_1}^{V_1} C_s dV \qquad (3)$$
$$P = \frac{E}{1000 \times \Delta t} \qquad (4)$$

Where E (Wh kg⁻¹) is the energy density, P is the power density (kW kg⁻¹), V(V) is the working potential, C_s is the specific capacity (mAh g⁻¹), and Δt (h) is the discharging time.

Alternatively, Volumetric energy density and power density of the device were obtained from the following equations:

$$E = \int_{V_1}^{V_1} \frac{C_a}{d} dV$$

$$P = \frac{E}{1000 \times \Delta t}$$
(5)
(6)

where E (Wh cm⁻³) is the energy density, P (W cm⁻³) is the power density, C_a is the areal capacitance (mAh cm⁻²) obtained from Equation (1), V (V) is the working potential, d (cm) is the thickness of the device (cm), and Δt (h) is the discharging time.

Fig. S1. The schematic illustration of creating oxygen vacancy defects on the surface of ultrathin Co_3O_4 nanosheets.

Fig. S2. SEM images of the pristine Co₃O₄ nanowire sample.

Fig. S3. (a) TEM image and (b) HRTEM image of the pristine Co₃O₄ nanowire sample.

Fig. S4. (a) CV curves at various scan rates; (b) charge-discharge profiles at different current densities for the $R-Co_3O_4$ nanowire electrode.

Fig. S5. (a) Nyquist plots of the pristine Co_3O_4 and $R-Co_3O_4$ electrodes. (b) Enlarged Nyquist plot of the $R-Co_3O_4$ electrode.

Fig. S6. Charge-discharge profiles for the $R-Co_3O_4$ nanowire electrodes reduced with different times at 10 mA cm⁻².

Fig. S7. CV curves of the Zn//Co batteries with (a) pristine Co_3O_4 and (b) R- Co_3O_4 cathodes at various scan rates.

Fig. S8. Charge-discharge profiles of the Zn//Co batteries with (a) pristine Co_3O_4 and (b) R- Co_3O_4 cathodes at various current densities.

Fig. S9. Nyquist plots of the Zn//Co batteries with (a) R-Co₃O₄ and (b) pristine Co₃O₄ cathodes; and the corresponding equivalent circuit diagram of the Zn//Co batteries is inset in the Fig. S9b.

Fig. S10. Constructed models of Co_3O_4 (311) surfaces with (a) perfect surface (presenting Co_3O_4) and (b) a surface with an oxygen vacancy (presenting R-Co₃O₄).

Fig. S11. The top-view electron density difference of (a) pristine Co_3O_4 , (b) R- Co_3O_4 with one oxygen vacancy, (c) pristine Co_3O_4 after adsorption of OH⁻, and (d) R- Co_3O_4 with one oxygen vacancy after adsorption of OH⁻.

Battery	Electrolyte	Capacity (mAh g ⁻¹)
Zn//R-Co ₃ O ₄	6 M KOH saturated with	240.8 (0.53 A g ⁻¹); 159.8 (5.3 A g ⁻¹);
	$Zn(Ac)_2$	96.3 (10.5 A g ⁻¹)
Zn//Co ₃ O ₄	6 M KOH saturated with	19.7 (0.48 A g ⁻¹); 4.72 (4.8 A g ⁻¹)
	Zn(Ac) ₂	
Ni_3S_2 // Zn^1	1 M KOH + 0.02 M	148 (0.2 A g ⁻¹); 68 (5 A g ⁻¹)
	$Zn(Ac)_2$	
Zn@CF//Co ₃ O ₄ ²	1 M KOH + 0.001 M	168 (1 A g ⁻¹); 78 (10 A g ⁻¹)
	$Zn(Ac)_2$	
Zn//Co(III) rich-Co ₃ O ₄ ³	$2\ M\ ZnSO_4 + 0.2\ M\ CoSO_4$	200 (0.5 A g ⁻¹); 91 (5 A g ⁻¹)
CC-CF@NiO//CC-	2 M KOH saturated with	203 (0.96 A g ⁻¹); 78 (10 A g ⁻¹)
CF@ZnO ⁴	ZnO	
Zn//CuHCF ⁵	0.02 M ZnSO ₄	54 (0.06 A g^{-1}); 43.7 (0.6 A g^{-1})
Zn//ZnHCF ⁶	3 M ZnSO ₄	66.5 (0.06 A g ⁻¹); 29.3 (1.2 A g ⁻¹)
$Zn//Na_{3}V_{2}(PO_{4})_{2}F_{3}{}^{7}$	2 M Zn(CF ₃ SO ₃) ₂	60 (0.2 A g ⁻¹); 33 (3 A g ⁻¹)
$Zn//Na_3V_2(PO_4)_3{}^8$	0.5 M Zn(CH ₃ COO) ₂	97 (0.05 A g ⁻¹); 58 (1 A g ⁻¹)
Zn//VS ₂ 9	1 M ZnSO ₄	159.1 (0.1 A g ⁻¹); 115.5 (2 A g ⁻¹)
$Zn//Na_{0.33}V_2O_5{}^{10}$	3 M Zn(CF ₃ SO ₃) ₂	173.4 (0.5 A g ⁻¹); 96.4 (2 A g ⁻¹)
Zn//a-MnO ₂ /CNT battery ¹¹	$0.3 \text{ M} \text{ZnSO}_4 + 0.015 \text{ M}$	145 (0.1 A g ⁻¹); 97 (0.25 A g ⁻¹)
	MnSO ₄	
$Zn//ZnMn_2O_4{}^{12}$	2 M Zn(CF ₃ SO ₃) ₂	$\sim 150~(0.05~A~g^{-1});~72~(2~A~g^{-1})$
Zn//Mn ₃ O ₄ ¹³	$2 \text{ M ZnSO}_4 + 0.1 \text{ M MnSO}_4$	185 (0.3 A g ⁻¹); 125 (0.5 A g ⁻¹)
Zn//MnO ₂ @CNT ¹⁴	2 M Zn(CF ₃ SO ₃) ₂ -PVA	188 (0.1 A g ⁻¹); 45 (2 A g ⁻¹)
Zn//MnO2 ¹⁵	2 M ZnSO ₄ +0.2 M MnSO ₄	~235 (0.754 A g ⁻¹); 43 (1.885 A g ⁻¹)

Table S1. Comparison of our $Zn/R-Co_3O_4$ battery with some recently reported Zn-based batteries.

Reference:

- P. Hu, T. Wang, J. Zhao, C. Zhang, J. Ma, H. Du, X. Wang and G. Cui, ACS Appl. Mater. Interfaces, 2015, 7, 26396-26399.
- X. Wang, F. Wang, L. Wang, M. Li, Y. Wang, B. Chen, Y. Zhu, L. Fu, L. Zha, L. Zhang, Y. Wu and W. Huang, *Adv. Mater.*, 2016, 28, 4904-4911.
- L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang, Z. Liu, Z. Wang, Y. Huang, Z. Pei and J. A. Zapien, *Energy Environ. Sci.*, 2018, 11, 2521-2530.
- J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu and J. Wang, *Adv. Mater.*, 2016, 28, 8732-8739.
- 5. R. Trocoli and F. La Mantia, ChemSusChem, 2015, 8, 481-485.
- 6. L. Zhang, L. Chen, X. Zhou and Z. Liu, Sci. Rep., 2015, 5, 18263.
- 7. W. Li, K. Wang, S. Cheng and K. Jiang, Energy Storage Mater., 2018, 15, 14-21.
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding and Y. Huang, *Nano Energy*, 2016, 25, 211-217.
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, *Adv. Energy Mater.*, 2017, 7, 1601920.
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu and L. Mai, *Adv. Energy Mater.*, 2018, 8, 1702463.
- 11.F. Mo, H. Li, Z. Pei, G. Liang, L. Ma, Q. Yang, D. Wang, Y. Huang and C. Zhi, *Science Bulletin*, 2018, **63**, 1077-1086.
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, J. Am. Chem. Soc., 2016, 138, 12894-12901.
- 13. C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang and S. Liang, J. Mater. Chem. A, 2018, 6, 9677-9683.
- 14. K. Wang, X. Zhang, J. Han, X. Zhang, X. Sun, C. Li, W. Liu, Q. Li and Y. Ma, ACS Appl. Mater. Interfaces, 2018, 10, 24573-24582.
- 15. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu and C. Wang, J. Am. Chem. Soc., 2017, 139, 9775-9778.