Supplemental Information

Mesoporous Amorphous Al₂O₃/Crystalline WO₃ Heterophase Hybrids for Electrocatalysis and Gas Sensing Applications

Yidong Zou^{‡a}, Shibo Xi^{‡b}, Tao Bo^c, Xinran Zhou^a, Junhao Ma^a, Xuanyu Yang^a, Caozheng Diao^d

and Yonghui Deng^{a,*}

^a Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, *iChEM*, Fudan

University, Shanghai 200433, China

^b Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research

in Singapore (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore

^c Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China

^d Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link,

Singapore 117603, Singapore

* Corresponding author.

E-mail: yhdeng@fudan.edu.cn (Y. H. Deng)

‡ Y. D. Zou and Dr S. B. Xi contributed equally to this work.

Figure S1. Optical photographs of the mAl₂O₃/WO₃-*X* (X = 0, 2.0, 5.0, 10.0 and 20.0) after carbonization in N₂ (350 °C/500 °C) and calcination in air at 400 °C for 1 h, 450 °C for 1 h and 500 °C for 0.5 h, respectively.

Figure S2. HAADF-STEM image of mAl_2O_3/WO_3 -5.0 after carbonization in N_2 (350 °C/500 °C) and calcination in air at 450 °C. The corresponding EDX and elemental mapping images of mAl_2O_3/WO_3 -5.0 with W, Al and O elements.

Figure S3. (a) XRD patterns of the various Al_2O_3 content for mAl_2O_3/WO_3 -*X* composites after calcination in air at 400 °C (*X* =0, 2.0, 5.0, 10.0 and 20.0). (b) XRD patterns of the various Al_2O_3 content for mAl_2O_3/WO_3 -*X* composites after calcination in air at 500 °C (*X* =0, 2.0, 5.0, 10.0 and 20.0).

Figure S4. (a) FT-IR spectra and (b) UV-DRS of the various Al_2O_3 content for mAl_2O_3/WO_3-X composites after calcination in air at 450 °C.

Figure S5. Wide scan XPS spectra of pure mWO_3 and mAl_2O_3/WO_3 -5.0 composites after carbonization in N₂ at 350 °C and calcination at 450 °C in air.

Figure S6. (a) FESEM images of standard commercial WO_3 nano-powders and (b) N_2 adsorptiondesorption isotherms recorded at 77 K. The inset in panel (b) is the corresponding pore size distribution curve (the measured pores are from the voids among the closely packed WO_3 particles).

Samples	Pore size D (nm) ^{<i>a</i>}	$S_{\mathrm{BET}}{}^{b}\left(\mathrm{m}^{2}\cdot\mathrm{g}^{-1} ight)$	$V_{t}^{c}(\mathrm{cm}^{3}\cdot\mathrm{g}^{-1})$	
mWO ₃	15.3	42.5	0.150	
mAl ₂ O ₃ /WO ₃ -2.0	20.9	52.5	0.179	
mAl ₂ O ₃ /WO ₃ -5.0	19.2	58.8	0.178	
mAl ₂ O ₃ /WO ₃ -10.0	20.8	67.3	0.188	
mAl ₂ O ₃ /WO ₃ -20.0	20.6	72.6	0.202	

Table S1. Textural properties of the ordered mesoporous mAl_2O_3/WO_3-X (X = 0, 2.0, 5.0, 10.0 and 20.0) samples calcination in air at 450 °C

^{*a*}*D*: pore diameter derived from the adsorption branches at the maxima of BJH pore size distribution curves; ${}^{b}S_{\text{BET}}$: BET specific surface area; ${}^{c}V_{t}$: total pore volume was calculated from *t*-plot method.

Samples	O 1s			W 4f			
	lattice oxygen O ²⁻	dissociative O ⁻	adsorbed molecular oxygen	$W^{5+} 4 f_{5/2}$	$W^{5+} 4 f_{7/2}$	$W^{6+} 4 f_{5/2}$	$W^{6+}4f_{7/2}$
mWO ₃	530.10 eV	530.90 eV	532.45 eV	37.40 eV	35.22 eV	35.73 eV	37.88 eV
	76.44%	13.96%	9.60%	31.47%	33.88%	21.70%	12.95%
mAl ₂ O ₃ /WO ₃ -5.0	530.14 eV	531.05 eV	532.40 eV	37.48 eV	35.14 eV	35.81 eV	38.03 eV
	46.99%	44.05%	8.96%	24.60%	16.00%	28.36%	31.04%

Table S2. Relative contents of different groups of mWO_3 and mAl_2O_3/WO_3 -5.0 calculated from XPS analysis