Hydroxyl Group Modification Improves the Electrocatalytic ORR and OER Activity of Graphene Supported Single and Bi-metal Atomic Catalysts (Ni, Co, Fe)

Xiaomei Zhao^a, Xia Liu^b, Baoyu Huang^a, Pu Wang^a and Yong Pei*^a

^aDepartment of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Hunan Province, Xiangtan 411105, People's Republic of China ^bState Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

Email: ypei2@xtu.edu.cn

Contents of the Supporting Information

Figure S1. The optimized geometrical structures of defective graphene in top views, mainly including the DG (O, I and P).

Figure S2. (a)-(c) The free energy diagrams (FEDs) of the OER and ORR processes at zero potential over MM/DG and HO-MM/DG.(d)The linear relationship between free energies of adsorption of oxygenated intermediates over M-M bridge center of MM/DG and M center of (HO)₂-MM/DG.

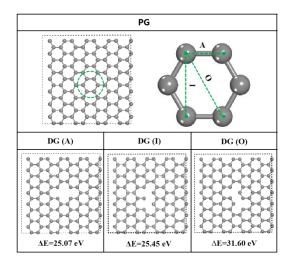
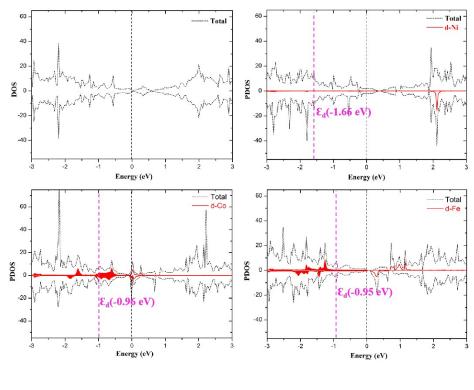
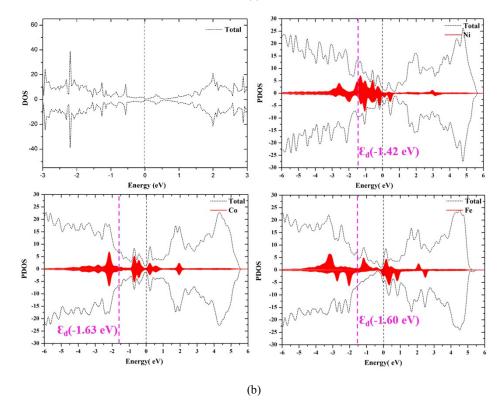

Figure S3. The project density of states (PDOS) of the d-orbitals of the transition metal atom (M) on bare M/DG and M^1M^2/DG . (a) The PDOS of d-orbitals of the M on bare M/DG; (b) The PDOS of d-orbitals of the M on bare MM/DG. (c) The PDOS of d-orbitals of the M¹ and M² on bare M^1M^2/DG . Pink dotted line denoted the d-band center of transition metal atom M.

Figure S4. The ΔG (eV) of the various reactions and all intermediates configurations of OER and ORR process on Co/DG, Fe/DG and (O)₃-CoFe/DG.

Table S1-S3. The ΔE_{ads} (eV) and ΔG_{ads} (eV) of oxygenated intermediates involved in OER and ORR on bare and hydroxylated M/DG, MM/DG and M¹M²/DG.

Table S4-S8. The ΔG of various reactions (eV) and η (V) involved in the OER and ORR over bare and hydroxylated M/DG, MM/DG and M¹M²/DG.


Table S9. Zero point energy corrections (ZPE) and entropic contributions (TS) and total energies (E) to the Gibbs free energies.


Figure S1. The optimized geometrical structures of defective graphene in top views, mainly including the DG (O, I and P).

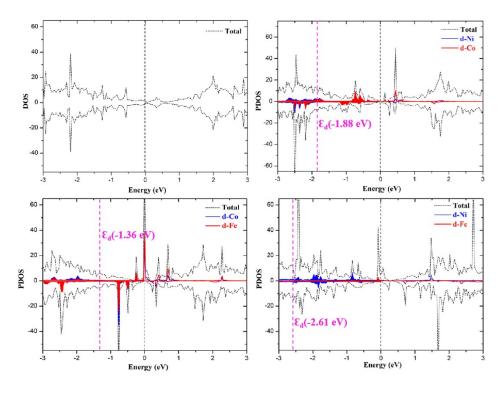
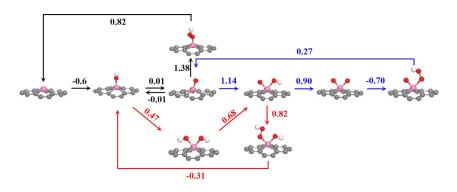
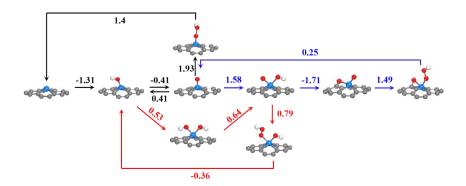
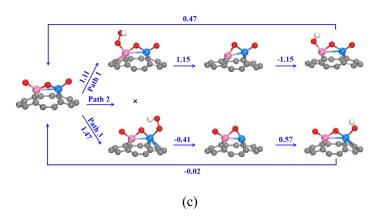


Figure S2 (a) The free energy diagrams (FEDs) of the OER and ORR processes at zero potential over M-M bridge center of MM/DG. (b) The free energy diagrams (FEDs) of the OER and ORR processes at zero potential over M center of HO-M/DG (Path B1). (c) The free energy diagrams (FEDs) of the OER and ORR processes at zero potential over M-M bridge center of (HO)₂-MM/DG (Path B2).(d) The linear relationship between free energies of adsorption of oxygenated intermediates over M-M bridge center of MM/DG and M center of (HO)₂-MM/DG.





(c)


Figure S3. The project density of states (PDOS) of the d-orbitals of the transition metal atom (M) on bare M/DG and M^1M^2/DG . (a) The PDOS of d-orbitals of the M on bare M/DG. (b) The PDOS of d-orbitals of the M on bare MM/DG. (c) The PDOS of d-orbitals of the M^1 and M^2 on bare M^1M^2/DG . Pink dotted line denoted the d-band center of transition metal atom M.

(a)

(b)

Figure S4. (a) The ΔG (eV) of the various reactions and all intermediates configurations of OER and ORR process on Co/DG. (b) The ΔG (eV) of the various reactions and all intermediates configurations of OER and ORR process on Fe/DG. (c) The ΔG (eV) of the various reactions and all intermediates configurations of OER and ORR process on (O)₃-CoFe/DG.

Oxygenated Intermediates	Ni/DG (eV)	Co/DG (eV)	Fe/DG (eV)
	M center of I	M/DG	
ΔE_{OH^*}	0.71	-0.06	-0.77
ΔG_{OH^*}	0.99	0.22	-0.48
ΔE_{O^*}	2.47	1.05	-0.08
ΔG_{O^*}	2.48	1.06	-0.07
ΔE_{OOH*}	3.75	3.04	2.47
ΔG_{OOH*}	3.98	3.27	2.69
$\Delta E_{O2}*$	-0.08	-0.90	-1.20
ΔG_{O2^*}	-0.07	-0.89	-1.19
	M center of HC	D-M/DG	
ΔE_{OH^*}	-	0.93	0.99
ΔG_{OH^*}	_	1.3	1.35

Table S1. The $\Delta E_{ads}(eV)$ and $\Delta G_{ads}(eV)$ of oxygenated intermediates involved in OER and ORR on bare and hydroxylated M/DG.

ΔE_{O*}	_	2.85	2.88
ΔG_{O^*}	_	2.87	2.82
ΔE_{OOH*}	_	4.05	4.11
ΔG_{OOH^*}	_	4.45	4.44
ΔE_{O2^*}	-	0.28	0.65
ΔG_{O2^*}	_	0.51	0.88

Table S2. The ΔE_{ads} (eV) and ΔG_{ads} (eV) of oxygenated intermediates involved in OER and ORR on bare and
hydroxylated MM/DG.

Oxygenated Intermediates	NiNi/DG	CoCo/DG (eV)	FeFe/DG (eV)
	M-M bridge cente	er of MM/DG	
ΔE_{OH^*}	-1.11	-1.48	-1.26
ΔG_{OH*}	-0.82	-1.19	-0.97
ΔE_{O^*}	1.99	-0.46	-0.92
ΔG_{O^*}	2.00	-0.45	-0.91
ΔE_{OOH*}	2.61	1.71	1.58
ΔG_{OOH^*}	2.83	1.93	1.80
ΔE_{O2^*}	-1.95	-1.68	-1.84
ΔG_{O2^*}	-1.94	-1.67	-1.83
M c	enter / M-M bridge cen	ter of (HO) ₂ -MM/DG	
ΔE_{OH^*}	0.72	0.33/0.84	0.91/1.11
ΔG_{OH^*}	1.08	0.79/1.30	1.36/1.56
ΔE_{O^*}	2.38/1.86	1.95/2.31	2.41/1.87
ΔG_{O^*}	2.32/1.89	2.03/2.40	2.49/1.95
ΔE_{OOH*}	3.85/3.89	3.45/3.76	4.07/4.01
ΔG_{OOH^*}	4.19/4.23	3.83/4.15	4.45/4.39
ΔE_{O2^*}	-0.23/-0.65	-1.12/-0.30	-0.36/-0.01
ΔG_{O2^*}	0.00/-0.09	-0.56/0.26	0.20/0.55

 $\label{eq:solution} \mbox{Table S3. The ΔE_{ads} (eV) and ΔG_{ads} (eV) of oxygenated intermediates involved in OER and ORR process on bare and hydroxylated M^1M^2/DG.}$

Oxygenated Intermediates	NiCo/DG (eV)	CoFe/DG (eV)	NiFe/DG (eV)
	M^{1} - M^{2} bridge center	$r of M^1 M^2 / DG$	
ΔE_{OH^*}	-1.28	-1.78	-0.26
ΔG_{OH^*}	-0.99	-1.49	0.03
ΔE_{O^*}	-0.35	-0.95	0.78
ΔG_{O^*}	-0.35	-0.94	0.79
ΔE_{OOH*}	1.98	1.52	3.00

ΔG_{OOH^*}	2.20	1.74	3.23
ΔE_{O2^*}	-1.49	-1.97	-1.68
ΔG_{O2^*}	-1.48	-1.96	-1.67
M^{I} o	center / M ¹ -M ² bridge center / M	M^2 center of (HO) ₂ - M^1M^2/D	OG
ΔE_{OH*}	0.50/0.38/0.10	0.67/0.74/0.22	0.86/0.57/-0.41
ΔG_{OH^*}	0.96/0.84/0.54	1.12/1.19/0.68	1.31/1.02/0.04
ΔE_{O^*}	2.75/1.73/1.69	2.24/1.49/1.45	3.05/1.50/0.45
ΔG_{O^*}	2.83/1.82/1.77	2.32/1.57 /1.53	3.13/1.58/0.53
ΔE_{OOH^*}	3.73/3.36/3.42	3.68/3.57 /3.11	3.62/3.13/2.15
ΔG_{OOH^*}	4.12/3.74/3.80	4.06/3.96 /3.49	4.00/3.51/2.53
$\Delta E_{O2}*$	-0.80/-0.60/-1.41	-0.83/-0.49/-1.38	-0.53/-0.77/-2.14
ΔG_{O2*}	-0.24/-0.04/-0.85	-0.27/0.07/-0.82	0.03/-0.21/-1.58

Table S4. The ΔG of various reactions (eV) and η (V) for the OER and ORR process over bare and hydroxylated M/DG.

Reactions	$\Delta G(eV)$	$\eta(V)$	$\Delta G(eV)$	$\eta(V)$	$\Delta G(eV)$	$\eta(V)$
	N	Ji/DG	C	Co/DG	F	e/DG
		M center of	f M/DG			
OH [−] +*→OH*+e [−]	0.17	OFP 0.07	-0.6	OFP 0.00	-1.31	OEP 1 50
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	0.66	$\eta^{OER}=0.27$	0.01	η ^{OER} =0.98	-0.41	$\eta^{\text{OER}}=1.53$
OH [−] +O*→OOH*+e ⁻	0.67	$\eta^{ORR}=0.29$	1.38	$\eta^{ORR}=1.00$	1.93	$\eta^{ORR}=1.71$
$OH^-+OOH^* \rightarrow^{*+}O_2+H_2O+e^-$	0.11		0.82		1.4	
		M center of H	IO-M/DG			
OH [−] +*→OH*+e [−]	_		0.47		0.53	
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	_	-	0.68	η ^{OER} =0.36	0.64	$\eta^{OER}=0.39$
OH [−] +O*→OOH*+e ⁻	_	_	0.77	$\eta^{ORR}=0.71$	0.79	$\eta^{ORR}=0.76$
$OH^-+OOH^* \rightarrow^*+O_2+H_2O+e^-$	_		-0.31		-0.36	

Reactions	$\Delta G(eV)$	$\eta(V)$	$\Delta G(eV)$	$\eta(V)$	$\Delta G(eV)$	$\eta(V)$
	Ni	Ni/DG	Co	oCo/DG	Fe	eFe/DG
		M-M bridge cer	nter of MM/D	G		
OH [−] +*→OH*+e ⁻	-1.65	OEP 1 50	-2.02		-1.80	OEP 1 00
$OH^+OH^* \rightarrow O^{*+}H_2O^+e^-$	1.99	η ^{OER} =1.59	-0.09	η ^{OER} =1.76	-0.77	η ^{OER} =1.88
OH [−] +O*→OOH*+e ⁻	0.01	$\eta^{ORR}=2.05$	1.55	$\eta^{ORR}=2.42$	1.88	$\eta^{ORR}=2.20$
$OH^-+OOH^* \rightarrow ^*+O_2+H_2O+e^-$	1.26		2.16		2.29	
	М сен	nter / M-M bridge c	enter of (HO)	2- <i>MM/DG</i>		
OH [−] +*→OH*+e ⁻	0.25	OFR a children	-0.04/0.47		0.53/0.74	
$OH^+OH^* \rightarrow O^* + H_2O + e^-$	0.42/-0.10	η ^{OER} =0.64/1.19	0.41/0.27	$\eta^{OER}=0.57/0.52$	0.31/-0.44	$\eta^{OER}=0.73/1.22$
OH [−] +O*→OOH*+e ⁻	1.04/1.59	$\eta^{ORR}=0.51/0.54$	0.97/0.92	$\eta^{ORR}=0.44/0.45$	1.13/1.62	$\eta^{ORR}=0.76/0.84$
$OH^-+OOH^* \rightarrow ^*+O_2+H_2O+e^-$	-0.10/-0.14		0.26/-0.05		-0.37/-	

Table S5. The ΔG of various reactions (eV) and η (V) for the OER and ORR process over bare and hydroxylated MM/DG.

Table S6. The ΔG of various reactions (eV) and η (V) for the OER and ORR process over bare and hydroxylated

(HO)2-NiCo/DG.

Reactions	ΔG(eV)	η(V)
Ni-Co b	oridge center of NiCo/D	G
OH [−] +*→OH*+e [−]	-1.82	OFR 1 40
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	-0.18	η ^{OER} =1.49
OH [−] +O*→OOH*+e ⁻	1.72	$\eta^{ORR}=2.22$
$OH^-+OOH^* \rightarrow *+O_2+H_2O+e^-$	1.89	
Ni center / Ni-Co bridg	ge center / Co center of	(HO) ₂ -NiCo/DG
OH [−] +*→OH*+e [−]	0.13/0.01/-0.27	OFR 0 (4/0 (0/0 01
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	1.04/0.15/0.38	η ^{OER} =0.64/0.69/0.81
OH [−] +O*→OOH*+e ⁻	0.46/1.09/1.21	$\eta^{ORR}=0.43/0.39/0.67$
$OH^-+OOH^* \rightarrow *+O_2+H_2O+e^-$	-0.03/0.35/0.28	

Table S7. The ΔG of various reactions (eV) and η (V) for the OER and ORR process over bare and hydroxylated (HO)₂-CoFe/DG.

Reactions	$\Delta G(eV)$	$\eta(V)$
Co-Fe brid	lge center of CoFe/DO	F
OH⁻+*→OH*+e⁻	-2.32	OFR 1 OF
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	-0.28	η ^{OER} =1.95
OH [−] +O*→OOH*+e [−]	1.85	$\eta^{ORR}=2.72$
$OH^+OOH^* \rightarrow ^*+O_2+H_2O+e^-$	2.35	
Co center / Co-Fe bridge of	center / Fe center of (H	HO)2-CoFe/DG

OH [−] +*→OH*+e [−]	0.29/0.37/-0.15	OER 0.50/1 1//0.72
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	0.37/-0.45/0.02	η ^{OER} =0.50/1.16/0.73
OH⁻+O*→OOH*+e-	0.90/1.56/1.13	$\eta^{ORR}=0.36/0.85/0.55$
$OH^-+OOH^* \rightarrow *+O_2+H_2O+e^-$	0.04/0.13/0.60	

Table S8. The ΔG of various reactions (eV) and η (V) for the OER and ORR process over bare and hydroxylated (HO)₂-NiFe/DG.

Reactions	$\Delta G(eV)$	η(V)					
Ni-Fe bridge center of NiFe/DG							
OH [−] +*→OH*+e [−]	-0.79						
$OH^-+OH^* \rightarrow O^*+H_2O+e^-$	-0.07	η ^{OER} =1.21					
OH [−] +O*→OOH*+e [−]	1.62	$\eta^{ORR}=1.19$					
$OH^-+OOH^* \rightarrow *+O_2+H_2O+e^-$	0.86						
Ni center / Ni-Fe bridg	ge center / Fe center of (I	HO) ₂ -NiFe/DG					
OH [−] +*→OH*+e [−]	0.48/0.19/-0.78	OFR 0.50/0.70/1.10					
$OH^+OH^* \rightarrow O^* + H_2O + e^-$	0.99/-0.27/-0.34	η ^{OER} =0.59/0.70/1.19					
OH [−] +O*→OOH*+e [−]	0.05/1.10/1.17	$\eta^{ORR}=0.35/0.69/1.16$					
$OH^-+OOH^* \rightarrow *+O_2+H_2O+e^-$	0.08/0.58/1.56						

Table S9. Zero point energy corrections (ZPE) and entropic contributions (TS) and total energies (E) to the free

	Eller	5103.	
Species	ZPE (eV)	TS (eV)	E (eV)
H ₂	0.27	0.41	-6.76
H ₂ O	0.56	0.67	-14.22
	M/DG / MM/D	$G / M^1 M^2 / DG$	
OH*	0.33	0.08	-
O*	0.08	0.05	_
OOH*	0.39	0.16	_
O ₂ *	0.14	0.15	_
	HO-M/DG / I	HO-NiNi/DG	
HO-M/DG	0.33	0.08	_
OH*	0.73	0.17	_
O*	0.42	0.20	_
OOH*	0.82	0.25	_
O ₂ *	0.49	0.26	_
	(HO)2-MM/DG /	$(HO)_2$ - M^1M^2/DG	
(HO) ₂ -M ¹ M ² /DG	0.69	0.25	_
OH*	1.10	0.24	_
O*	0.80	0.25	_

Energies.

OOH*	1.15	0.34	_
O ₂ *	0.87	0.31	_