Supporting Information

Enhanced performance of tin-based perovskite solar cells induced by ammonium hypophosphite additive

Jiupeng Cao, Qidong Tai, Peng You, Guanqi Tang, Tianyue Wang, Naixiang Wang,

Feng Yan*

Department of Applied Physics, The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong, P.R. China

E-mail: apafyan@polyu.edu.hk

Figure S1. XRD pattern of $FASnI_3$ films with various amounts of AHP.

Figure S2. XPS spectra (Sn 3d) of (a) FASnI₃perovskitefilm and (b)5mol% AHP included FASnI₃perovskite film. XPS profile of (c) Cl peaks and (d) P peaks before and after Argon etching.

Figure S3. Cross-sectional SEM image of the FASnI₃ solar cells.

Figure S4. External quantum efficiency (EQE) of the champion $FASnI_3$ solar cell and

corresponding integrated current density.

Figure S5. Distribution of photovoltaic parameters of plain FASnI_3 solar cells and 5

mol% AHP included FASnI₃solar cells.

Figure S6. The fitted values of R_{rec} measured at different bias voltages.

Figure S7. (a) Normalized PCE of $FASnI_3$ solar cells as a function of storage time in ambient air with~20% humidity. (b) Normalized PCE of $FASnI_3$ solar cells as a function of storage time in N₂ without encapsulation.

Table S1. Fitted parameters of time-resolved PL curves of the perovskite films.

Sample	A ₁	$\tau_1(ns)$	A ₂	τ_2 (ns)
control	0.22	0.23	0.78	0.85
5% AHP	0.19	0.25	0.81	2.23

Table S2. Photovoltaic performance of $FASnl_3$ solar cells with different amounts of

AHP.

AHP concentration	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
Control	0.25±0.05	17.72±1.65	51.11±9.01	2.34±0.71
3%	0.35±0.03	18.54±1.82	59.89±2.67	3.93±0.72
5%	0.50±0.03	19.55±0.79	63.71±4.47	6.25±0.67
7%	0.33±0.04	19.18±0.98	57.91±2.43	3.71±0.56

The average values for each condition are calculated from 8 separate devices.

Composition	Device structure	V _{oc} (V)	PCE (%)	Ref
FASnI ₃ (SnF ₂)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/spiro-OMeTAD/Au	0.24	2.1	1
FASnI ₃ (SnF ₂ , N ₂ H ₅ Cl)	ITO/PEDOT:PSS/perovskite/PCBM/BCP/Ag	0.46	5.4	2
FASnI ₃ (SnF ₂ , pyrazine)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/spiro-OMeTAD/Au	0.32	4.8	3
FASnl ₃ (SnF ₂ , TMA)	ITO/PEDOT:PSS/perovskite/C ₆₀ /Ag	0.47	7.09	4
{en}FASnI ₃ (SnF ₂)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/PTAA/Au	0.48	7.14	5
{PN}FASnI ₃ (SnF ₂)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/PTAA/Au	0.44	5.85	6
FASn(Br _{0.25} I _{0.75}) ₃ (SnF ₂)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/spiro-OMeTAD/Au	0.41	5.5	7
FASnI ₃ (SnF ₂ , PMMA)	ITO/PEDOT:PSS/perovskite/PCBM/Ag	0.48	3.62	8
FASnI ₃ (SnCl ₂ ,HQSA)	ITO/NiO _x /perovskite/PCBM/Ag	0.55	6.76	9
FASnI ₃ (SnCl ₂ , AHP)	ITO/CuSCN/perovskite/PCBM/Ag	0.55	7.34	This work

Table S3. Summary of photovoltaic performance of FASnI₃ solar cells.

Table S4. The recombination resistances of plain FASnI₃ solar cells and 5 mol% AHP

included FASnI₃ solar cells fitted from the Nyquist plots.

Bias (V)	Control (Ω)	5% ΑΗΡ (Ω)
0.1	13000	26600
0.2	2890	7430
0.3	171	962

Table S5. Summary of lifetime of FASnI₃ solar cells stored in air without encapsulation.

Composition	Device structure	RH (%)	Lifetime	Ref
FASnl ₃ (SnF ₂ , TMA)	ITO/PEDOT:PSS/perovskite/C ₆₀ /Ag	50	20 h	4
FASnl ₃ (SnF ₂ , TMA)	FTO/SnO ₂ /C ₆₀ /perovskite/spiro-OMeTAD/Ag	50	10 h	4
FASnl ₃ (SnF ₂)	FTO/PEDOT:PSS/perovskite/PCBM/BCP/Ag	40	8 h	1 0
FA _{0.75} MA _{0.25} Snl ₃ (SnF ₂)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/Ag	-	1 h	1 1
FASnl ₃ (SnF ₂)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/AI	20	50 h	1 2
FASnl ₃ (SnF ₂ , PEAI)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/AI	20	80 h	1 2
FASnI ₃ (SnF ₂ , EDAI ₂ , GAI)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/Ag	20	180 h	1 3
FASnl ₃ (SnCl ₂ , KHQSA)	ITO/NiO _x /perovskite/PCBM/Ag	20	500 h	9
FASnl ₃ (SnCl ₂ , KHQSA)	ITO/NiO _x /perovskite/PCBM/Ag	45	168 h	9
FASnl ₃ (SnCl ₂ , AHP)	ITO/CuSCN/perovskite/PCBM/Ag	20	500 h	This work

References

- T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar and N. Mathews, *Journal of Materials Chemistry A*, 2015, 3, 14996-15000.
- 2. M. E. Kayesh, T. H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda and A. Islam, *ACS Energy Letters*, 2018.
- 3. S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo and S. I. Seok, Journal of the American Chemical Society, 2016, **138**, 3974-3977.
- 4. Z. Zhu, C.-C. Chueh, N. Li, C. Mao and A. K. Y. Jen, *Advanced materials*, 2018, **30**, 1703800.
- 5. W. Ke, C. C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O. Y. Kontsevoi, M. Chen, D. Sarma and Y. Zhang, *Science Advances*, 2017, **3**, e1701293.
- 6. W. Ke, C. C. Stoumpos, I. Spanopoulos, M. Chen, M. R. Wasielewski and M. G. Kanatzidis, *ACS Energy Letters*, 2018.
- 7. S. J. Lee, S. S. Shin, J. Im, T. K. Ahn, J. H. Noh, N. J. Jeon, S. I. Seok and J. Seo, ACS

Energy Letters, 2018, 3, 46-53.

- 8. L. Deng, K. Wang, H. Yang, H. Yu and B. Hu, *Journal of Physics D: Applied Physics*, 2018, **51**, 475102.
- 9. Q. Tai, X. Guo, G. Tang, P. You, T.-W. Ng, D. Shen, J. Cao, C.-K. Liu, N. Wang, Y. Zhu, C.-S. Lee and F. Yan, *Angewandte Chemie International Edition*, 2019, **58**, 806-810.
- 10. X. Liu, Y. Wang, F. Xie, X. Yang and L. Han, *ACS Energy Letters*, 2018, **3**, 1116-1121.
- N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino and S. Hayase, *The journal of physical chemistry letters*, 2018, **9**, 1682-1688.
- 12. S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster and M. A. Loi, *Advanced Energy Materials*, 2017.
- 13. E. Jokar, C.-H. Chien, C.-M. Tsai, A. Fathi and E. W.-G. Diau, *Advanced materials*, 2019, **31**, 1804835.