1 Supporting Information for

2

Plasma-activated CoO_x nanocluster supported on graphite 3 intercalation compounds for improved CO₂ electroreduction 4 to formate 5 6 7 Qiang Zhang, Anbang He, Yong Yang, Jun Du^{*}, Zouhua Liu and Changyuan Tao^{*} 8 9 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, 10 China. 11 12 *Corresponding authors: College of Chemistry and Chemical Engineering, Chongqing 13 University, Chongqing 401331, China. 14 *E-mail addresses: dujune@cqu.edu.cn (Jun Du), taocy@cqu.edu.cn (Changyuan Tao).* 15 16 17 Mailing address for correspondence: 18 Dr. Du, Jun (Prof.) College of Chemistry and Chemical Engineering, Chongqing University 19

20 No.55 Daxuecheng South Rd., Shapingba

21 Chongqing 401331, China

22 Tel: +86-23-625678923

23 Fax: +86-23-625678923

24 E-mail: dujune@cqu.edu.cn

25

2 Electrochemical Measurements

3 In all measurements, we used SCE as the reference electrode. For comparison with

4 the literature, all the potentials in this paper were converted to the RHE reference:

5
$$E(vs. RHE) = E(vs.SCE) + 0.24 V + 0.059*pH$$

6 CO2ER was conducted in CO2-saturated 0.1 M KHCO3 solution (pH 6.8) at room

7 temperature and atmospheric pressure.

8

9 Calculation for Activity Descriptors

10 Faradaic efficiency (FE) of gaseous products at each applied potential was calculated11 based on the equation:

$$FE = \frac{z \cdot P \cdot F \cdot V \cdot v_i}{R \cdot T \cdot J}$$

Partial current density for formate normalized by the geometrical electrode area $(J_{\text{formate}}, \text{A cm}^{-2})$ was determined by calculating the total current density multiplied by FE of formate:

$$_{16} \quad J_{formate} = FE_{formate} \cdot J$$

Formate mass activity was determined by formate partial current density dividedby catalyst mass on the electrode:

19 Mass activity =
$$\frac{J_{formate}}{m}$$

Formate production rate normalized by the geometrical electrode area (n,
mol·cm⁻²·h⁻¹) was calculated based on the formula:

$$n = \frac{P \cdot V \cdot v_i}{R \cdot T} \times 3600$$

Turnover Frequency (TOF, h⁻¹) for formate production per metal site is defined as
the mole of formate product formed divided by the mole of Co metals in catalysts
employed in the CO₂ electrolysis per hour, which can be obtained by following
formula:

$$TOF = \frac{n \cdot M}{m \cdot \omega}$$

6

7 Where *z* is the number of electrons transferred per mole of gas product (*z* is 4 for 8 formate), *F* is Faraday constant (96500 C·mol⁻¹), *P* is pressure (1.01 × 10⁵ Pa), *V* is 9 the gas volumetric flow rate (3.33×10⁻⁷ m³·s⁻¹), v_i is the volume concentration of gas 10 product determined by GC, *T* is the temperature (298.15 K), *R* is the gas constant 11 (8.314 J mol⁻¹·K⁻¹), *J* is the steady-state current at each applied potential (A), *m* is the 12 catalyst mass on the electrode (g·cm⁻²), ω is the mass percentage of Co metal in the 13 catalysts detected by EDS, and *M* is atomic mass of metal (g·mol⁻¹).

To evaluate the effect of surface area, we measured the electrochemically active surface area (ECSA) for different catalysts electrodes from the electrochemical double-layer capacitance of the catalytic surface ^[1]. The electrochemical capacitance was determined by measuring the non-Faradaic capacitive current associated with double-layer charging from the scan-rate dependence of cyclic voltammograms (CVs). The double-layer charging current is equal to the product of the scan rate, *v*, and the electrochemical double-layer capacitance, C_{DL}, as given by the equation:

21 $i_c = vC_{DL}$

22 Thus, a plot of i_c as a function of v yields a straight line with a slope equal to C_{DL} . The

specific ECSA of the electrodes is calculated from the double layer capacitance
 according to the equation:

3 ECSA= C_{DL}/C_s 4 Where C_s is the specific capacitance of the sample or the capacitance of an atomically 5 smooth planar surface of the material per unit area under identical electrolyte 6 conditions. For our estimates of surface area, we use general specific capacitances of 7 Cs = 0.020 mF based on typical reported values ^[1]. 8 9 10 11 12

4 Fig. S1 schematic diagram of the electrolytic cell configuration for the
5 electroreduction of CO₂ supplied directly from the gas phase.

8 Fig. S2 (a) XRD patterns (10~90°) of graphite, ZrO₂-GICs, Co₃O₄/graphite,
9 CoO_x/graphite and Co₃O₄/ZrO₂-GICs; (b) XRD patterns (28~53°) of graphite, ZrO₂10 GICs, Co₃O₄/graphite, CoO_x/graphite and Co₃O₄/ZrO₂-GICs.

2 Fig. S3 The volume of graphite and ZrO_2 -GICs with the same quality (0.1 g).

Fig. S5 CV scans of Co_3O_4 /graphite, CoO_x /graphite, Co_3O_4 /ZrO₂-GICs and 7 CoO_x /ZrO₂-GICs with CO₂ in 0.1 M KHCO₃.

9 Fig. S7 XPS spectrum of CoO_x/ZrO_2 -GICs before and after applied potential (-0.85 V

10 vs. RHE, continuous electrolysis for 2 h) : (a) C 1s, (b) Zr 3d, (c) Co 2p, (d) O 1s.

- 5 Fig. S9 TEM images of CoO_x/ZrO_2 -GICs. Element distribution mapping for (c) Co, (d)
- $6 \quad O, (j) Zr, (k) C of CoO_x/ZrO_2-GICs.$

2 Table S1 Surface elemental composition and chemical state of different catalysts as

3 probed by XPS.

Catalyst		Co 2p (%)			O 1s (%)			
	Co ²⁺	C0 ³⁺	Co ²⁺ /Co ³⁺		Olatt+Olow-defect	O _{ads}	(Olatt+Olow-defect)/Oads	
Co ₃ O ₄ /graphite	32.43	67.57	0.48		90.78	9.22	9.85	
CoO _x /graphite	40.12	59.88	0.67		87.75	12.25	7.16	
Co ₃ O ₄ /ZrO ₂ -GICs	33.77	66.23	0.51		91.95	8.05	11.43	
CoO _x /ZrO ₂ -GIC	40.83	59.17	0.69		90.67	9.33	9.71	

⁴

5 **Table S2** $Co^{2+}:Co^{3+}$ ratio of CoO_x/ZrO_2 -GIC before and after applied potential (-0.35

6 V vs. RHE, continuous electrolysis for 2 h).

Catalyst	Co 2p (%)			
	Co ²⁺	Co ³⁺	Co ²⁺ / Co ³⁺	
CoO_x/ZrO_2 -GIC -before	40.8	59.2	0.69	
CoO _x /ZrO ₂ -GIC-after	41.5	58.5	0.71	

7

8 Table S3 The composition quantification of different catalysts analyzed by ICP.

Catalyst	Zr(wt.%)	Co(wt.%)	O(wt.%)	C(wt.%)
Co ₃ O ₄ /graphite	0	3.0	3.6	93.4
CoO_x /graphite	0	2.9	3.1	94.0
Co ₃ O ₄ /ZrO ₂ -GICs	10.2	2.9	4.9	820
CoO_x/ZrO_2 -GICs	9.6	2.8	4.0	83.6

3 Table S4 Electrochemical CO₂RR properties of Co-base electrocatalysts compared

4	with other metal	materials	for	formate	production.

Catalysts		Electrolyte	Work	Formate	Stability	Ref.			
			potential	faradaic					
			*	efficiency					
Other	Cu@Sn	0.1 M KHCO3	-1.1 V vs. RHE	90.4%	10 h	18			
metal	Bi nanoflakes	0.1 M KHCO3	-0.6 V vs. RHE	100%	10 h	19			
catalysts	nano-Bi	0.5 M KHCO3	-1.6 V vs. SCE	98.4%	14 h	20			
	SnOx/AgOx	0.1 M KHCO3	-0.8 V vs. RHE	~30%	20 h	21			
	Bi /Bi ₂ O ₃	0.5 M KHCO3	-0.86 V vs. RHE	100%	~24 h	22			
	Sn-Bi	0.1 M KHCO3	-1.1 V vs. RHE	96%	100 h	23			
	sub-2 nm SnO2 Quantum	0.1 M KHCO3	-0.956 V vs.	74.04%	7 h	24			
	Wires		RHE						
	Bi2O3NSs@MCCM	0.1 M KHCO3	-0.956 V vs.	73.6%	12 h	25			
	-		RHE						
	Mo@NG-2	saturated KCl solution	-1.4 V vs. RHE	29%	~76 h	26			
Co-based	Ultrathin Co ₃ O ₄ layers	0.1 M KHCO3	-0.24 V vs. RHE	60%	20 h	16			
catalysts	V_o -rich Co ₃ O ₄	0.1 M KHCO3	-0.23 V vs. RHE	85%	40 h	17			
	Co ₃ O ₄ nanofibers	0.1M TBAPF ₆ in	-1.5 V vs. NHE	27%	8 h	27			
	CAN + 1%vol H ₂ O								
	Molecular Co complexes	0.5 M KHCO3	-2 V vs. Fc ^{+/0}	90%	~1 h	28			
	Cobalt protoporphyrin	0.1 M HClO ₄	-0.6 V vs. RHE	N.A.	1 h	29			
	Atomic Cobalt layers	0.1 M Na2SO4	-0.85 V vs. SCE	90%	60 h	30			
	Co ₃ O ₄ nitrogen	0.1 M KHCO3	-0.95 V vs. SCE	83%	8 h	31			
	doped graphene								
	Cu-Co nanoparticles	0.1 M KHCO3	-1.1 V vs. RHE	10%	N.A.	32			
	Co complex	0.1 M	-1.05 V vs. NHE	80%	~9 h	33			
		nBu ₄ NPF ₆ /CH ₃ CN							
	CoO _x /ZrO ₂ -GICs	0.1 M KHCO3	-0.35 V vs. RHE	98.4%	60 h	This			
						work			

References

[1] G. Passard, A.M. Ullman, C.N. Brodsky, D.G. Nocera, J. Am. Chem. Soc. 138 (2016) 2925-2928.