Supporting Information

Free–Standing N,Co-Codoped TiO₂ Nanoparticles for LiO₂–Based Li–O₂ Batteries

Wen-Long Bai^a, Shu-Mao Xu^a, Cheng-Yang Xu^b, Qiang Zhang^a, Hong-Hui Wang^a,

Zhen Zhang^a, Xin Chen^a, Sheng-Yang Dong^b, Yu-Si Liu^a, Zhi-Xin Xu^a, Xiao-Gang

Zhang^b, Zhen Wang^c, Kai-Xue Wang^a*, Jie-Sheng Chen^a

^aShanghai Electrochemical Energy Devices Research Center, School of Chemistry

and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R.

China

^bJiangsu Key Laboratory of Materials and Technology for Energy Conversion,

College of Material Science and Engineering, Nanjing University of Aeronautics and

Astronautics, Nanjing, 210016, P. R. China

^cKey Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China

*Corresponding author: <u>k.wang@sjtu.edu.cn</u>

Figure S1. TGA curve of N, Co-TiO₂/CFs.

Figure S2. SEM image of TiO_2/CFs .

Figure S3. EDX elemental mapping of Co, Ti, and N of the N,Co-TiO₂/CFs.

Figure S4. XPS patterns of N,Co-TiO₂/CFs

Figure S5. (a) UV-vis diffuse reflectance spectra of N,Co-TiO₂/CFs and TiO₂/CFs. (b) The band gaps of N,Co-TiO₂/CFs and TiO₂/CFs.

Figure S6. Cyclic voltammetry (CV) curve of TiO_2/CFs at a constant scan rate of 0.1 mV s⁻¹.

Figure S7. (a) The crystal structure of the DFT predicted LiO₂ crystal with an orthorhombic lattice. The purple and red colors are lithium and oxygen, respectively. (b) The simulated XRD pattern of the DFT structure of orthorhombic LiO₂ crystal structures under the wavelength 1.540562 Å (λ_1) and 1.54439 Å (λ_2). Atomic coordinates for the LiO₂ crystal structure from DFT calculation can be obtained from the ICSD-Database. The X-ray tube is Cu target.

Figure S8. Raman spectra of N,Co-TiO $_2$ /CFs cathode after discharged for 5h and 10h of GITT experiment.

Figure S9. Linear sweep voltammetry measurement of $N_{,Co-TiO_2/CFs}$ under different discharge time.

Figure S10. SEM images of (a) N,Co-TiO₂/CFs and (b) TiO₂/CFs after the first charging.

Figure S11. XPS patterns of Li 1s in N, Co-TiO₂/CFs and in TiO₂/CFs.

Figure S12. DEMS analyses of gas consumption and evolution during (a) discharge and (b) charge of N, Co-TiO₂/CFs.

The $e^{-}O_2$ ratio is based on the amount of reaction charge and O_2 consumption. Before the discharge and charge process, it is necessary to keep O_2 evolution rate stable for 6 hours. O_2 evolution rate of this stage is called the baseline. In the subsequent discharge process, the O_2 evolution rate decrease due to the consumption of O_2 in the reduction reaction. Therefore, the average O_2 consumption rate is the difference of these two stages. On the contrary, the O_2 evolution rate will increase due to the decomposition of Li_2O_2 in the charge process. The procedure can be calculated by using the following equations:

Charge process:

Qcharge NA(Vcharge – Vbaseline)ave

Discharge process:

Qdischarge NA(Vbaseline – Vdischarge)ave

V(discharge) is the average O_2 evolution rate of the charge process. V(discharge) is the average O_2 evolution rate of the discharge process. The V(baseline) is the average O_2 evolution rate of whole the stable stage. N_A is the Avogadro constant. Q(charge) and Q(discharge) are the amount of reaction charge.

Figure S13. The discharge/charge profiles of N,Co-TiO₂/CFs at current density of 200 mA g^{-1} with a limited capacity of 1000 mAh g^{-1} .

The cycling performance with cut-off capacity of 1000 mAh g⁻¹ was measured in Fig. S13. The initial discharge and charge overpotential of N,Co-TiO₂/CFs is only 0.1, and 0.2 V, respectively. After 40 cycles, the charge terminal potential of N,Co-TiO₂/CFs is still less than 3.7 V.

Figure S14. Electrochemical impedance spectra of (a) pristine and (b) discharged TiO₂/CFs.

Table S1. Adsorption energies (eV) of LiO_2 on the (110) surface of TiO_2/CF , N- TiO_2/CF , Co- TiO_2/CF and N,Co- TiO_2/CF .

	TiO ₂ /CF	N-TiO ₂ /CF	Co-TiO ₂ /CF	N,Co-TiO ₂ /CF.
LiO ₂	-1.41 eV	-3.45 eV	-2.30 eV	-4.08 eV