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Supplementary Data

Table S1. The elemental compositions of the Au@CdS core-shell HNCs derived from Au@Ag2S 
core-shell HNCs by cation exchange. The addition amounts of Cd(NO3)2·4H2O and TBP during the 
Cd2+-for-Ag+ cation exchange process were varied for Au@CdS-1 and Au@CdS-2 (Specifically, 
0.25 g of Cd(NO3)2·4H2O and 100 µL of TBP for Au@CdS-1; 0.03 g of Cd(NO3)2·4H2O and 50 
µL of TBP for Au@CdS-2). Determined by XPS analysis.

Sample Atomic concentration
(S2p, %)

Atomic concentration
(Ag3d, %)

Atomic concentration
(Cd3d, %)

Au@CdS-1 49.2 1.9 48.9
Au@CdS-2 47.7 8.7 43.6

Table S2. The elemental compositions of the Cu-doped Au@CdS core-shell HNCs determined by 
XPS analysis.

Sample Atomic concentration
(S2p, %)

Atomic concentration
(Cu2p, %)

Atomic concentration
(Cd3d, %)

Cu(6.3)-Au@CdS 54.6 6.3 39.1
Cu(14.7)-Au@CdS 47.5 14.7 37.8
Cu(16.6)-Au@CdS 45.5 16.6 37.9
Cu(18.9)-Au@CdS 41.2 18.9 39.9

Table S3. Summarization of the conductivity type, carrier density, and flat band potential of 
undoped and Cu-doped Au@CdS core-shell HNCs with different dopant concentration. Determined 
by the Mott-Schottky equation.

Sample Type N (cm-3) Flat band potential (V vs RHE)
Au@CdS n 1.7x1019 -0.08

Cu(6.3)-Au@CdS n 9.7x1018 0.27
Cu(14.7)-Au@CdS p 1.7x1019 1.87
Cu(16.6)-Au@CdS p 2.1x1019 1.91
Cu(18.9)- Au@CdS p 8.8x1019 1.99
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Fig. S1. TEM images of pristine Au@CdS core-shell HNCs (A), Au@Cu2S core-shell HNCs (B) 
and Cu-doped Au@CdS core-shell HNCs (C).
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Fig. S2. XPS spectra of S2p for the undoped and Cu-doped Au@CdS core-shell HNCs.
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Fig. S3. OCP responses of the Cu-doped Au@CdS core-shell HNCs with different dopant 
concentrations under illumination and in the dark. (A) Cu(6.3)-Au@CdS, (B) Cu(14.7)-Au@CdS, 
and (C) Cu(16.6)-Au@CdS.
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Fig. S4. OCP response of Cu-doped Au@CdS with notable Ag impurities in the shell matrix. 
Specifically, here Au@CdS-2 HNCs were adopted as the starting materials, which were prepared 
from Au@Ag2S core-shell HNCs by incomplete cation exchange involving the usage of 0.03 g of 
Cd(NO3)2·4H2O and 50 µL of TBP (Table S1). Although the reaction conditions for subsequent 
synthesis were the same as those for Cu(18.9)-Au@CdS core-shell HNCs, the △OCP value of this 
sample was still highly negative indicating the n-type conductivity. This was probably ascribed to 
the existence of the Ag impurities in the shell matrix, suggesting that the full removal of the Ag ions 
from the shell is a prerequisite for switching the conductivity type from n to p for the final products. 
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Fig. S5. Results of Mott-Schottky measurements for (A) undoped Au@CdS, (B) Cu(6.3)-Au@CdS, 
(C) Cu(14.7)-Au@CdS, (D) Cu(16.6)-Au@CdS and (E) Cu(18.9)-Au@CdS core-shell HNCs at 
different modulation frequencies.
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Fig. S6. Photocurrent density-potential curve for Au@Cu2S core-shell HNCs under simulated 
sunlight illumination (AM 1.5G, 100 mW cm-2) using a three-electrode configuration.
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Fig. S7. Photographs of the IrOx/Au@CdS photoanode and NiS/Cu(14.7)-Au@CdS photocathode 
(A) and the constructed tandem PEC cell (B).
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Fig. S8. XPS spectra for IrOx/Au@CdS photoanode (A,C) and NiS/Cu(14.7)-Au@CdS 
photocathode (B,D).
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Fig. S9. (A-C) The original gas chromatographic data for the evolution of O2 and H2 over time 
generated by the constructed tandem PEC cell, where the peaks of H2 and O2 appeared at about 3 
minutes and 4 minutes, respectively. (D) The data was measured by gas chromatograph after 10 mL 
of air was intentionally injected into the reaction system, where the peaks of O2 and N2 appeared at 
about 4 minutes and 5 minutes, respectively.  
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Fig. S10. XPS spectra of (A) Cu 2p and (B) Auger spectra of Cu LMM for the photocathode material 
(Cu(14.7)-Au@CdS HNCs decorated with NiS) of the constructed tandem PEC cell after PEC water 
splitting reaction. The results demonstrated that the vast majority of Cu in photocathode showed 0 
valence,1,2 suggesting that a considerable amount of accumulated electrons at the photocathode 
surface were consumed by the Cu dopant instead of the protons in solution to produce hydrogen.
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