Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Ultrahigh Li-ion Conductive Single-ion Polymer Electrolyte

Containing Fluorinated Polysulfonamide for Quasi-solid-state Li-ion

Batteries

Yunyun Zhong,^{a†} Lei Zhong,^{a†} Shuanjin Wang, ^a Jiaxiang Qin,^{a,d} Dongmei Han,^b Shan Ren,^a Min Xiao,*a Luyi Sun,^c Yuezhong Meng *a

- a. The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
- b. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China.
- c. Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.
- d. State Key Laboratory of Environmental Adaptability for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou, 510663, P. R. China.
- *E-mail: mengyzh@mail.sysu.edu.cn (Yuezhong Meng)
- *E-mail: stsxm@mail.sysu.edu.cn (Min Xiao)
- † Y. Y. Zhong and L. Zhong contributed equally to this work.



Fig. S1 Optimized geometries of the Li^+ -DMC and Li^+ -EC complex from GGA-PBE calculations. Purple spheres represent Li, red-O, white-H, grey-C.

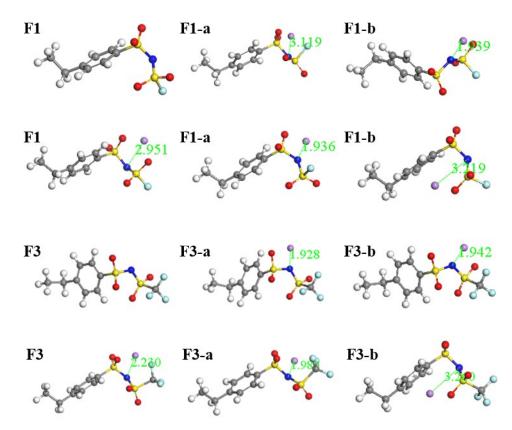


Fig. S2 Interaction types between Li⁺ and the anions of LiSFSI (F1) and LiSTFSI (F3). Blue spheres represent N, yellow-S, cyan-F, red-O, white-H, grey-C.

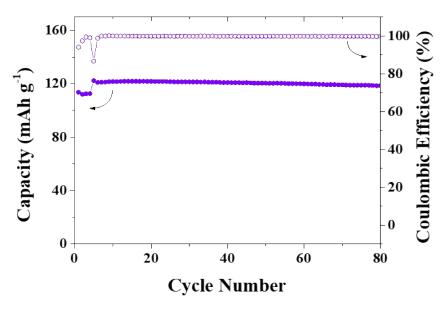


Fig. S3 Cycle performance of Li|LFPP-4/2/1@PVDF SIPE|LFP batteries at 1.0 C.

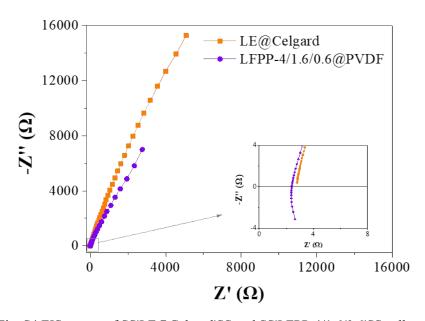


Fig. S4 EIS curves of SS|LE@Celgard|SS and SS|LFPP-4/1.6/0.6|SS cells at 30 °C.

 $Table \ S1 \ Calculation \ result \ of \ ionic \ conductivity \ of \ LFPP-4/2/1 @PVDF \ SIPE \ and \ PP \ with \ liquid \ electrolyte$

	Thickness (µm)	$R(\Omega)$	σ(mS cm ⁻¹)
LFPP-4/1.6/0.6@PVDF SIPE	252	2.17	5.81
LE@Celgard	25	2.8	0.47

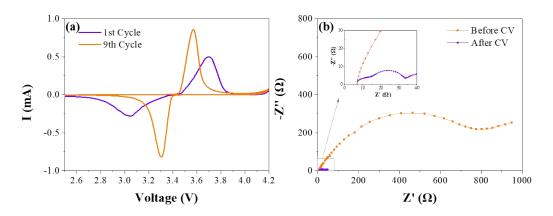


Fig. S5 The initial and 9th cycles of cyclic voltammetry curves (left) and EIS curves of the Li|LFPP-4/2/1@PVDF SIPE|LFP battery.

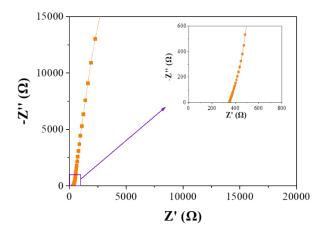


Fig. S6 The EIS curve of the LFPP-4/1.6/0.6 SIPE in an electrolytic tank with platinum plate electrodes as working electrode and opposite electrode.

Table S2 Calculation result of ionic conductivity of LFPP-4/2/1@PVDF SIPE with platinum plate electrodes as working electrode and opposite electrode.

	L (mm)	S (cm ²)	$R(\Omega)$	σ (mS cm ⁻¹)
LFPP-4/1.6/0.6@PVDF SIPE	12.0	0.4	348	8.62