Supporting information

High rate hybrid MnO₂@CNT fabric anode for Li-ion batteries: properties

and lithium storage mechanism study by in situ synchrotron X-ray

scattering

Moumita Rana,^a Venkata Sai Avvaru,^{a,b} Nicola Boaretto,^{a,c} Víctor A. de la Peña O'Shea,^c

Rebeca Marcilla,^d Vinodkumar Etacheri*^a and Juan J. Vilatela*^a

^aIMDEA Materials, Eric Kandel 2, 28906 Getafe, Madrid, Spain

^bFaculty of Science, Autonoma University of Madrid, C/ Francisco Tomás y Valiente, 7, Madrid 28049, Spain

^cPhotoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Parque Tecnológico de Móstoles, 28935 Móstoles, Madrid, Spain

^dElectrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Parque Tecnológico de Móstoles, 28935 Móstoles, Madrid, Spain

* vinodkumar.etacheri@imdea.org, juanjose.vilatela@imdea.org

Figure S1. FESEM images of $MnO_2@CNTF$ hybrid at different magnifications, showing inform coating of hierarchical MnO_2 nanoflowers. The preoxidized CNTF allows the uniform growth of MnO_2 as can be seen in (c) and (f). Inset pictures in (a) show the flexible nature of the macroscopic samples.

Figure S2. FESEM images of (a,b) pristine CNT fibers veils and (c,d) MnO₂ nanoflowers on pristine CNTF showing non-uniform oxide coverage on CNT bundles.

Figure S3. (a) Electron dispersive X-ray spectrum of $MnO_2@CNTF$ hybrid. (b) BET isotherm of $MnO_2@CNTF$ hybrid.

Figure S4. Comparison of (a) TGA and (b) DTA curves of MnO₂/CNTF hybrid with pristine CNTF in aerial atmosphere.

Figure S5. (a)First two cyclic voltammograms of pristine CNT at a scan rate of 0.1 mV/s. (b) First three voltage profiles of $MnO_2@CNTF$ for charge-discharge process at a current density of 25 mA/g. (c) Fitting of Cunn-Donway (equation 1) at 2V during anodic scan (R-Square = 0.92). (d) Comparison of rating for this material and literature data (from table ST1).

Figure S6. Rate profiles of (a) $MnO_2@CNT$ with 43% MnO_2 loading and (b) commercial MnO_2 at current densities of 25 mA/g to 5 A/g. (c) voltage profiles of commercial MnO_2 at different current densities.

Sr. No.	Material (crystal structure)	Specific capacity (mAh/g)	Current density	reference	
		1153	25mA/g		
		955	50 mA/g		
		882	100 mA/g		
		838	200 mA/g	This work	
1.	MnOx@CNT 783 722 650 519 344	783	500 mA/g		
		722	1 A/g		
		650	2 A/g		
		519	5 A/g		
		344	10 A/g		
2.	MnO/Carbon Nanopeapods	463	5 A/g	[1]	
3.	MnO ₂ /Carbon Nanotube Array	500	50 mA/g	[2]	
4.	putty-like MnO ₂ /CNT	796	500 mA/ g	[2]	
		236	10 A/g	[3]	
5.	MnO ₂ /	948	50 mA/g		
	Conjugated Polymer/Graphene	698	400 mA/g	[4]	
6.	Nanoflaky MnO ₂ /carbon nanotube	820	200 mA/g	[⁵]	

Table ST1. Comparison of specific capacitance values of Li-ion battery anodes with MnO₂@CNTF hybrid.

		250	4 A/g	
7.	Mn ₃ O ₄ /C nanospheres	1237	200 mA/g	
		425	4 A/g	[۴]
8.	MnO ₂ nanorods	1075	100 mA/ g	[7]
		489	1A/g	
9.	Graphene-Wrapped MnO2–Graphene Nanoribbons	890	100 mA/ g	[8]
		550	1A/g	
10	monodisperse α-Mn2O3 octahedra	791	100 mA/g	
10.		435	3200 mA/g	[2]
11		495	100 mA/g	F107
11.	Thin Film of Graphene-MnO2 Nanotube	208	1.6 A/g	
		810	40 mA/g	
12.	Mn ₃ O ₄ –Graphene	390	1.6 A/g	[11]
13	Graphene/Ni ₂ P	599	100 mA/g	<u>г</u> 121
13.		260	5A/g	
14	Mesoporous Co ₃ O ₄	1033	100 mA/g	[13]
17.		622	5 A /g	
15	MnO/C	1165	0.3 A /g	г141
15.		580	3 A /g	['']
16	Mesoporous Dual Carbon Armored MnO Nanoparticles	865	100 mA/g	r151
16.		425	2 A/ g	[13]
17	Mn3O4 Nanoparticles on Hollow Carbon Nanofiber	835	200 mA/g	5163
17.		528	2 A/g	
10	$(TMO = CoO, Ni_2O_3, Mn_3O4) NPs$	For CoO 1554	96 mA /g	r17a
18.	Graphitic Nanotubes	410	1.75 A /g	['']
	Hollow C sphere with open pore encapsulated MnO ₂ nanosheets	780.4	500 mA/g	۲ ¹⁸]
19.		398	5 A/ g	LJ
20.	3D δ-MnO ₂ nanostructure	905	0.1 A/g	[¹⁹]

		271	1 A/g	
21.	coaxial MnO ₂ /CNTs nanocomposite	1064	0.1 A/g	F201
		474	1.6 A/g	
22.	Nanoflake δ -MnO ₂ deposited on carbon nanotubes-graphene-Ni foam scaffolds	500	4 A/g	[21]
23.	nanostructured MnO ₂	1095	100 mA/g	[22]
		464	2 A/g	
24.	MoS ₂ -on-MXene Heterostructures	646	100 mA/g	
		182	2A/g	[²³]
		90	5 A/g	
25.	Urchin-like α-Fe ₂ O ₃ /MnO ₂ hierarchical hollow composite microspheres	716	0.2 A/g	[24]
		413	1 A/g	

Figure S7. (a) Digital image of the set-up for the operando synchrotron SAXS/ WAXS measurements and the customized cell with free-standing working electrode. (b, c) Consumption of lithium during in situ synchrotron charge-discharge process corresponding to galvanostatic profiles shown in Figure 4.

Material	Crystal phase (ICSD- reference number)	Peak position in q (Å ⁻¹)	Lattice Plane	Ref.
	Crystal system: Hexagonal	2.55	(100)	
	a (Å): 2.829	2.92	(101)	
MnO ₂	b (Å): 2.829 c (Å): 4.410	3.8	(102)	25
	Alpha (°): 90.0000 Beta (°): 90.0000	4.42	(210)	
	Gamma (°): 120 ICSD-76430, PDF 00-030-820	5.12	(103)	
	Crystal system:Orthorhombic	2.42	(230)	
	Space group: P b c a a (Å): 9.4120	2.79	(114)	
	b (Å): 9.4180 c (Å): 9.4230	3.96	(244)	
Mn ₂ O ₃	Alpha (°): 90.0000	4.73	(435)	26
	Beta (°): 90.0000 Gamma (°): 90.0000 Reference code: 98-002-4342 ICSD: 24342, ICDD: 00-024-0508 PDF code: 00-024-0508	4.87	(336)	
	Crystal system: Cubic	2.45	(111)	
	Space group: F m -3 m a (Å): 4.4880	2.82	(002)	
MnO	b (Å): 4.4880	3.99	(113)	
IVIIIO	Alpha (°): 90.0000	4.66	(222)	27
	Beta (°): 90.0000 Gamma (°): 90.0000 PANICSD:98-065-7312 ICSD:657312	4.85	(004)	27
	Crystal system: Orthorhombic	2.54	(012)	
	Space group: $P m m n$	2.95	(021)	25
	b (Å): 4.5810	4.17	(113)	
LiMnO ₂	c (Å): 5.7490 Alpha (°): 90.0000	4.91	(104)	28
	Beta (°): 90.0000 Gamma (°): 90.0000 Reference code:98-008-1050 ICSD : 81050	5.12	(114)	20

 Table ST2: Details of the crystallographic analysis of in situ WAXS measurement.

	Crystal system: Cubic Space group: I -4 3 m a (Å): 8.9050 b (Å): 8.9050 c (Å): 8.9050 Alpha (°): 90.0000 Beta (°): 90.0000 Gamma (°): 90.0000 ICSD:164349, PANICSD:98-016- 4349	2.62	(123)	29
		2.83	(004)	
Mn		2.99	(114)	
		3.31	(233)	
		4.23	(244)	
		4.88	(444)	
		4.98	(055)	
	Crystal system: Tetragonal Space group: I 41/a m d	2.33	(013)	
	a (Å): 5.6720	2.73	(004)	30
Li _{1.5} Mn _{0.97} O ₂	b (Å): 5.6720 c (Å): 9.1820	3.77	(132)	
	Alpha (°): 90.0000 Beta (°): 90.0000	4.16	(224)	
	Gamma (°): 90.0000 ICSD:62047, PANICSD:98-006- 2047	4.67	(026)	
	Crystal system: Cubic	2.32	(111)	
	$a(\text{\AA})$ 4 6890	2.67	(002)	
	b (Å): 4.6890	3.79	(022)	
Li ₂ O	c (Å): 4.6890 Alpha (°): 90.0000	4.44	(113)	31
	Beta (°): 90.0000 Gamma (°): 90.0000 ICSD:642216, PANICSD:98-064- 2216	4.64	(222)	

Figure S8. (a, b) WAXS pattern of electrochemically cycled $MnO_2/CNTF$ hybrid after 60 cycles. The vertical blue and red bars indicate the simulated XRD pattern of ε -MnO₂ and LiMnO₂ respectively. (c) Raman spectrum of electrochemically cycled sample after 60 cycles.

Figure S9. Convoluted XPS spectra of Mn3s recorded for (a) pristine $MnO_2@CNTF$, (b) sample at 0V after first lithiation and (c) sample at 3V after first delithiation.

Figure S10. (a, b) FESEM images of the MnO₂@CNTF hybrid after lithiation and delithiation process. (c) HAADF and (d-h) corresponding EDS elemental mapping images for (d) carbon, (e)

manganese, (f) oxygen, (g) phosphorus and (h) fluorine.

Figure S11. Comparison of the electrochemical impedance spectra (EIS) of $MnO_2@CNTF$ before and after electrochemical cycling. Inset shows the equivalent circuit model. The fitting parameter are listed in table ST1.

Table ST3: Fitting parameters for the EIS spectra of MnO_2 @CNTF before and after potential cycling.

Parameters	Before electrochemical cycling	After electrochemical cycling
R1 (equivalent series resistance)	11.16 Ohm	11.71 Ohm
Q2 (double layer capacitance)	13.69e-6 F.s^(a - 1)	11.76e-6 F.s^(a - 1)
R2 (charge transfer resistance)	217.7 Ohm	118.1 Ohm

Figure S12. TEM images of the sample after CD process.

Figure S13. (a) Rate profile and (b) corresponding voltage profiles of commercial MnO2-C@Cu at different current densities. The specific capacity values are normalized with respect to the total electrode weight. (c) A plot of weight saving factor at different current densities.

References:

- [1] H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee and C. Li, ACS Nano, 2014, 8, 6038–6046.
- [2] A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan, Nano Lett., 2009, 9, 1002– 1006.
- [3] L. Shen, Q. Dong, G. Zhu, Z. Dai, Y. Zhang, W. Wang and X. Dong, *Adv. Mater. Interfaces*, 2018, **5**, 1800362.
- [4] C. X. Guo, M. Wang, T. Chen, X. W. Lou and C. M. Li, Adv. Energy Mater., 2011, 1, 736– 741.
- [5] H. Xia, M. Lai and L. Lu, J. Mater. Chem., 2010, 20, 6896–6902.
- [6] K. Liu, F. Zou, Y. Sun, Z. Yu, X. Liu, L. Zhou, Y. Xia, B. D. Vogt and Y. Zhu, J. Power Sources, 2018, 395, 92–97.
- [7] J. Chen, Y. Wang, X. He, S. Xu, M. Fang, X. Zhao and Y. Shang, *Electrochim. Acta*, 2014, 142, 152–156.
- [8] L. Li, A. O. Raji and J. M. Tour, *Adv. Mater.*, 2013, **25**, 6298–6302.
- [9] J. Henzie, V. Etacheri, M. Jahan, H. Rong, C. N. Hong and V. G. Pol, *J. Mater. Chem. A*, 2017, **5**, 6079–6089.
- [10] A. Yu, H. W. Park, A. Davies, D. C. Higgins, Z. Chen and X. Xiao, *J. Phys. Chem. Lett.*, 2011, 2, 1855–1860.
- [11] H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui and H. Dai, J. Am. Chem. Soc., 2010, 132, 13978–13980.
- [12] C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, Adv. Mater., 2017, 29, 1604015.
- [13] S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, Adv. Funct. Mater., 2017, 27, 1605017.
- [14] D. Sun, Y. Tang, D. Ye, J. Yan, H. Zhou and H. Wang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 5254–5262.
- [15] W. Zhang, J. Li, J. Zhang, J. Sheng, T. He, M. Tian, Y. Zhao, C. Xie, L. Mai and S. Mu, ACS Appl. Mater. Interfaces, 2017, 9, 12680–12686.
- [16] D. Zhang, G. Li, J. Fan, B. Li and L. Li, *Chem. A Eur. J.*, 2018, 24, 9632–9638.
- [17] H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo and S. Guo, *Adv. Mater.*, 2018, **30**, 1705441.
- [18] J. Zang, J. Ye, H. Qian, Y. Lin, X. Zhang, M. Zheng and Q. Dong, *Electrochim. Acta*, 2018, 260, 783–788.
- [19] A. A. Voskanyan, C.-K. Ho and K. Y. Chan, J. Power Sources, 2019, 421, 162–168.
- [20] Y. Wu, X. Li, Q. Xiao, G. Lei, Z. Li and J. Guan, J. Electroanal. Chem., 2019, 834, 161–166.
- [21] X. Zhai, Z. Mao, G. Zhao, D. Rooney, N. Zhang and K. Sun, J. Power Sources, 2018, 402, 373–380.
- [22] L. Zhang, J. Song, Y. Liu, X. Yuan and S. Guo, J. Power Sources, 2018, 379, 68–73.
- [23] C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang and Y. Gogotsi, *Angew. Chemie Int. Ed.*, 2018, 57, 1846–1850.

- [24] D. Wang, Y. Wang, Q. Li, W. Guo, F. Zhang and S. Niu, J. Power Sources, 2018, 393, 186– 192.
- [25] Y. D. Kondrashev and A. I. Zaslavskii, Izv. Akad. Nauk SSSR, Seriya Fiz., 1951, 15, 179–186.
- [26] R. Norrestam, *Wroclaw*, 2002, **1**, 1–123.
- [27] M. J. Radler, J. B. Cohen, G. P. Sykora, T. Mason, D. E. Ellis and J. Faber Jr, J. Phys. Chem. Solids, 1992, 53, 141–154.
- [28] L. Croguennec, P. Deniard, R. Brec and A. Lecerf, J. Mater. Chem., 1995, 5, 1919–1925.
- [29] A. C. Lawson, A. C. Larson, M. C. Aronson, S. Johnson, Z. Fisk, P. C. Canfield, J. D. Thompson and R. B. Von Dreele, *J. Appl. Phys.*, 1994, **76**, 7049–7051.
- [30] W. I. F. David, M. M. Thackeray, P. G. Bruce and J. B. Goodenough, *Mater. Res. Bull.*, 1984, 19, 99–106.
- [31] T. W. D. Farley, W. Hayes, S. Hull, M. T. Hutchings and M. Vrtis, *J. Phys. Condens. Matter*, 1991, **3**, 4761.