Supplementary information

Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N_2 fixation

Xuemin Hu,^a Shiying Guo,^b Shengli Zhang,^{*b} Xiangyu Guo,^c Yafei Li^d, Shiping Huang,^c Kan Zhang^b and Junwu Zhu^{*a}

^aKey Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China

^bMIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^cState Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

^dJiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

*Corresponding author E-mail: <u>zhangslvip@njust.edu.cn</u>, zhujw@njust.edu.cn

Table S1. The optimized lattice constants (a, b), buckling height, B-B and M-B bond lengths, Bader charge of transition metals, cohesive energies of TiB₂ and NbB₂ monolayers.

Table S2. Effective independent elastic constants (C_{ij} , N/m), Young's modulus (E, N/m), and Poisson's ratio (v) of TiB₂ and NbB₂ monolayers.

Table S3. Computed adsorption energies (E_{ad} , eV) of N₂ on boron and transition metal surfaces of TiB₂ and NbB₂ monolayers by end-on and side-on way.

Table S4. Computed zero-point energies (E_{ZPE} , eV) and entropy at T=298.15 K (TS, eV) of different adsorption species for each adsorption species for TiB₂ and NbB₂ monolayers, which are obtained from the vibrational frequency calculations.

Table S5. Computed electronic energies (ΔE , eV) and Gibbs free energies (ΔG , eV) for each reaction steps

Table S6. Optimized N-N bond lengths (Å) during the NRR on TiB_2 and NbB_2 monolayers.

Fig. S1. Phonon spectra of (a) TiB_2 and (b) NbB_2 monolayers.

Fig. S2. Schematic diagrams of density of states around Fermi level for (a) TiB₂ and (b) NbB₂ monolayers.

Fig. S3. The band structures based on HSE06 functional of (a) TiB_2 and (b) NbB_2 monolayers.

Fig. S4. Variations of the DFT energy of (a) TiB_2 and (b) NbB_2 monolayer from 0 to 5 ps during ab initio molecular dynamics (AIMD) simulations at the temperature of 300 K under H₂O and N₂ atmosphere. (c-d) Snapshot of atomic configuration of AIMD simulations for NbB₂ monolayer. (c) is the initial structure, and (d) is the final structure after 5 ps. The model we use here includes a $4 \times 4 \times 1$ TiB₂/NbB₂ supercell, 4 N₂ molecules, and 9 H₂O molecules. Green, blue, orange atoms are N, O, H, respectively. Gray and pink atoms represent Nb and B.

Fig. S5. (a) The adsorption energies between TMs and O/H atoms of H_2O/N_2 on the TM side of 2D TiB₂ and NbB₂ monolayers. (b-d) The atomic structures of H_2O and N_2 adsorbed on the TM side of 2D TiB₂ and NbB₂ monolayers.

Fig. S6. The charge variations of the $*N_xH_v$ during the NRR steps for (a) TiB₂ and (b)

NbB₂ monolayers.

Fig. S7. Charge density difference of (a-c) N_2 -TiB₂ and (d-f) N_2 -NbB₂ systems. The isosurface value is set to 0.003 e/Bohr³. The yellow and cyan regions represent positive and negative charges, respectively.

Fig. S8. The kinetic barriers of key steps and corresponding atomic configurations of initial states (IS), transitional states (TS), final states (FS) for NRR and HER on TiB₂ (a-b) and NbB₂ (c-d) monolayers.

Table S1. The optimized lattice constants (a, b), buckling height, B-B and M-B bond lengths, Bader charge of transition metals, cohesive energies of TiB₂ and NbB₂ monolayers.

MB ₂	<i>a=b</i> (Å)	Height (Å)	B-B(Å)	M-B(Å)	Ti/Nb	<i>E_{coh}</i> (eV/atom)
TiB ₂	3.13	1.20	1.81	2.17	1.16	-6.49
NbB ₂	2.96	1.65	1.71	2.38	0.69	-7.23

Table S2. Effective independent elastic constants (C_{ij} , N/m), Young's modulus (E, N/m), and Poisson's ratio (v) of TiB₂ and NbB₂ monolayers.

MB_2	C_{11}	C_{22}	C_{12}	C_{44}	E	v
TiB ₂	165.14	165.14	-8.12	86.63	164.74	-0.05
NbB ₂	184.61	184.61	11.12	86.75	183.94	0.06

TiB ₂	Adsorption way	E _{ad}	NbB ₂	Adsorption way	E _{ad}
B-	end-on	-0.11	B-	end-on	-0.18
surface	side-on	-0.05	surface	side-on	-0.18
Ti-	end-on	-0.09	Nb-	end-on	-1.09
surface	side-on	-2.54	surface	side-on	-3.13

Table S3. Computed adsorption energies (E_{ad} , eV) of N₂ on boron and transition metal surfaces of TiB₂ and NbB₂ monolayers by end-on and side-on way.

Table S4. Computed zero-point energies (E_{ZPE} , eV) and entropy at T=298.15 K (TS, eV) of different adsorption species for each adsorption species for TiB₂ and NbB₂ monolayers, which are obtained from the vibrational frequency calculations.

TiB ₂	2	NbB ₂			
Adsorption Species	E_{ZPE} -TS	Adsorption Species	E_{ZPE} -TS		
*N2	0.17	*N2	0.17		
*N ₂ H	0.47	*N ₂ H	0.47		
*N ₂ H ₂	0.76	*N ₂ H ₂	0.74		
*N ₂ H ₃	1.09	*N ₂ H ₃	0.94		
*N ₂ H ₄	1.25	*N ₂ H ₄	1.21		
*NH	0.34	*N ₂ H ₅	1.52		
*NH ₂	0.54	*NH ₂	0.57		
*NH3	0.91	*NH ₃	0.93		

Table S5. Computed electronic energies (ΔE , eV) and Gibbs free energies (ΔG , eV) for each reaction steps

	TiB ₂		NbB ₂			
Adsorption Species	ΔE	ΔG	Adsorption Species	ΔE	ΔG	
*→*N ₂	-2.54	-1.99	*→*N ₂	-3.13	-2.58	
*N ₂ →*N ₂ H	-0.17	0.17	*N ₂ →*N ₂ H	-0.31	0.03	
*N ₂ H \rightarrow *N ₂ H ₂	-0.1	0.32	$*N_2H \rightarrow *N_2H_2$	0.04	0.35	
* $N_2H_2 \rightarrow N_2H_3$	0.18	0.55	$*N_2H_2 \rightarrow *N_2H_3$	-2.44	-2.20	
* $N_2H_3 \rightarrow N_2H_4$	-2.41	-2.21	$*N_2H_3 \rightarrow *N_2H_4$	0.25	0.55	
*N ₂ H ₄ →*NH	1.28	0.76	$*N_2H_4 \rightarrow *N_2H_5$	0.27	0.62	
*NH→*NH ₂	0.20	0.44	$*N_2H_5 \rightarrow *NH_2$	1.40	0.84	
* $NH_2 \rightarrow NH_3$	0.17	0.58	$*NH_2 \rightarrow *NH_3$	0.24	0.64	
NH ₃ →	0.82	0.33	*NH ₃ →*	1.32	0.78	

Table S6. Optimized N-N bond lengths (Å) during the NRR on TiB_2 and NbB_2 monolayers.

MB_2	N≡N	*N2	*N ₂ H	*N ₂ H ₂	*N ₂ H ₃	*N ₂ H ₄
TiB ₂	1.123	1.337	1.415	1.473	1.471	3.498
NbB ₂	1.123	1.339	1.403	1.461	3.167	/

Fig. S1. Phonon spectra of (a) TiB_2 and (b) NbB_2 monolayers.

Fig. S2. Schematic diagrams of density of states around Fermi level for (a) TiB₂ and (b) NbB₂ monolayers.

Fig. S3. The band structures based on HSE06 functional of (a) TiB_2 and (b) NbB_2 monolayers.

Fig. S4. Variations of the DFT energy of (a) TiB_2 and (b) NbB₂ monolayer from 0 to 5 ps during ab initio molecular dynamics (AIMD) simulations at the temperature of 300 K under H₂O and N₂ atmosphere. (c-d) Snapshot of atomic configuration of AIMD simulations for NbB₂ monolayer. (c) is the initial structure, and (d) is the final structure after 5 ps. The model we use here includes a $4 \times 4 \times 1$ TiB₂/NbB₂ supercell, 4 N₂ molecules, and 9 H₂O molecules. Green, blue, orange atoms are N, O, H, respectively. Gray and pink atoms represent Nb and B.

Fig. S5. (a) The adsorption energies between TMs and O/H atoms of H_2O/N_2 on the TM side of 2D TiB₂ and NbB₂ monolayers. (b-d) The atomic structures of H_2O and N_2 adsorbed on the TM side of 2D TiB₂ and NbB₂ monolayers.

Fig. S6. The charge variations of the $*N_xH_y$ during the NRR steps for (a) TiB₂ and (b) NbB₂ monolayers.

Fig. S7. Charge density difference of (a-c) N_2 -TiB₂ and (d-f) N_2 -NbB₂ systems. The isosurface value is set to 0.003 e/Bohr³. The yellow and cyan regions represent positive and negative charges, respectively.

Fig. S8. The kinetic barriers of key steps and corresponding atomic configurations of initial states (IS), transitional states (TS), final states (FS) for NRR and HER on TiB₂ (a-b) and NbB₂ (c-d) monolayers.