Supplementary Information

Redox Potential Regulation Toward Suppressing Hydrogen Evolution in

Aqueous Sodium-ion Batteries: Na_{1.5}Ti_{1.5}Fe_{0.5}(PO₄)₃

Yuegang Qiu, Yonghui Yu, Jia Xu, Yi Liu, Mingyang Ou, Shixiong Sun, Peng Wei,

Zhi Deng, Yue Xu, Chun Fang, Qing Li, Jiantao Han*, and Yunhui Huang

State Key Laboratory of Material Processing and Die & Mould Technology

School of Materials Science and Engineering

Huazhong University of Science and Technology

Wuhan 430074, P. R. China

Corresponding Author

*E-mail: jthan@hust.edu.cn (Prof. Jiantao Han)

	a(Å)	b(Å)	c(Å)	Volume(Å ³)	α	β	γ
NTP	8.513	8.513	21.692	1361.455	90	90	120
NTFP	8.532	8.532	21.775	1372.743	90	90	120

Table S1. Lattice parameters of $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP).

Table S2. Structure parameters of $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP) obtained from Rietveld refinement.

	NTP				NTFP		
Name	Fractional coordinates	Mult	Occupancy	Name	Fractional coordinates	Mult	Occupancy
01	0.1736, -0.0285, 0.1930	36	1	01	0.1736, -0.0285, 0.1930	36	1
02	0.1955, 0.1648, 0.085	36	1	02	0.1955, 0.1648, 0.085	36	1
Na1	0, 0, 0	6	1	Na1	0, 0, 0	6	1
Ti1	0, 0, 0.1455	12	1	Na2	0.6424, 0, 0.2500	18	0.1667
P1	0.2879, 0, 0.2500	18	1	Ti1	0, 0, 0.1455	12	0.7519
				Fe1	0, 0, 0.1455	12	0.2481
				P1	0.2879, 0, 0.2500	18	1

Table S3. Bond values of $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP) obtained from Rietveld refinement.

	Length (Å)		Angle (°)	
	Til(Fel)-Ol	Ti1-O1-P1	O1-P1-O2	O1-Ti1-O2
NTP	1.914	153.286	111.602	89.842
NTFP	1.919	153.291	111.566	89.904

Sample	Peak	Position BE (eV)	Atomic mass	Atomic Conc %	Mass Conc %
NTP	Na 1s	1068.00	22.990	0.94	1.27
	O 1s	528.60	15.999	40.15	37.63
	Ti 2p	457.35	47.878	4.02	11.27
	Р 2р	131.15	30.974	10.10	18.32
	C 1s	282.25	12.011	44.79	31.51
NTFP	Na 1s	1067.70	22.990	0.96	1.29
	O 1s	527.90	15.999	41.97	39.17
	Ti 2p	456.75	55.846	3.17	8.85
	Fe 2p	709.55	47.878	0.61	2.00
	Р 2р	130.45	30.974	10.27	18.56
	C 1s	281.950	12.011	43.02	30.14

Table S4. XPS quantification report of $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP).

Fig. S1. XPS detail spectra of (a) Na 1s, (b) Ti 2p, (c) P 2p, and (d) O 1s for the $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP) samples.

Fig. S2. XRD patterns of $NaTi_2(PO_4)_3/C$ (NTP/C) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3/C$ (NTFP/C).

Fig. S3. SEM and TEM images of (a-c) NaTi₂(PO₄)₃/C (NTP/C, carbon layer: 2 nm) and (d-f) Na_{1.5}Ti_{1.5}Fe_{0.5}(PO₄)₃/C (NTFP/C, carbon layer: 3 nm).

Fig. S4. TG curves of NaTi₂(PO₄)₃/C (NTP/C) and Na_{1.5}Ti_{1.5}Fe_{0.5}(PO₄)₃/C (NTFP/C).

Fig. S5. The Nyquist plots of $NaTi_2(PO_4)_3$ (NTP) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ (NTFP) (a) before and (b) after carbon coated (fresh half cells with metallic sodium as contour electrode).

The impedances of the cells assembled by the carbon-coated samples are greatly reduced, indicating that the carbon layer greatly improves the conductivity of the samples. And, regardless of carbon coating or not, the cell impedance of the Fe-substituted sample is lower than the non-substituted one, indicating that the Fe substitution improves the conductivity of the sample.

Fig. S6. (a) XRD patterns and (b) discharge curves of samples with different Fe substituted content $Na_{1+x}Ti_{2-x}Fe_x(PO_4)_3/C$.

Fig. S7. (a) XRD pattern and (b) morphology of $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$

Fig. S8. Sodium storage performances of $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ (NMTO) in the nonaqueous electrolyte. (a) Charge-discharge curves at 0.1C rate. (b) Long-cycle performance at 0.1C rate. (c) Charge-discharge curves at different rates. (d) Cycle performance of at different rates.

Fig. S9. The first three CV curves of $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ (NMTO), $NaTi_2(PO_4)_3$ /C (NTP/C) and $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ /C(NTFP/C) in the aqueous electrolyte at a scan rate of 1 mV s⁻¹.

Fig. S10. (a) Matchup parameters of the aqueous full cell (Charge capacity: $Q_{cathode} = Q_{anode.}$). Charge-discharge curves of (b) $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ (NMTO), (c) $NaTi_2(PO_4)_3/C$ (NTP/C), and (d) $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3/C$ (NTFP/C) half cells in the aqueous electrolyte at a same current density.

For NMTO-NTP/C aqueous full cell, mass(NMTO)*53.07 = mass(NTP/C)*107.37, and for NMTO-NTFP/C is mass(NMTO)*53.07 = mass(NTP/C)*103.8

Fig. S11. (a, c) Charge-discharge curves and (b, d) cycle performance of the (a, b) Cathode and (c, d) anode limited style $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ - $NaTi_2(PO_4)_3/C$ (NMTO-NTP/C) aqueous full cells at 2 C rate.

Cathode limited means the anode is 10% extra than the cathode, and anode limited means the cathode is 10% than the anode.

For $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ - $NaTi_2(PO_4)_3/C$ (NMTO-NTP/C) aqueous full cell, when it is cathode limited, the excessive anode will slightly restrain the hydrogen evolution in the charging process, while when it is anode limited, the hydrogen evolution will be aggravated. However, due to the low operating potential of NTP/C, hydrogen evolution is inevitable in both forms of the aqueous full cells, leading to a sharp deterioration of cycle performance.

Fig. S12. (a, c) Charge-discharge curves and (b, d) cycle performance of the (a, b) Cathode and (c, d) anode limited style $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2-Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3/C$ (NMTO-NTFP/C) aqueous full cells at 2 C rate.

For Na_{0.66}Mn_{0.66}Ti_{0.34}O₂-Na_{1.5}Ti_{1.5}Fe_{0.5}(PO₄)₃/C (NMTO-NTFP/C) aqueous full cell, when it is anode limited, the overcharging of anode will produce a certain degree of hydrogen evolution, leading to the rapid deterioration of the cycle performance of the cell with the accumulation of gas. When it is cathode limited, the specific capacity of the cell is low due to the limited Na⁺ provided by cathode, and in the subsequent cycle, the material structure of cathode is gradually destroyed due to overcharging, leading to the gradual attenuation of the cell capacity.

Fig. S13. The first 20 cycles Charge-discharge curves of (a) $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ -NaTi₂(PO₄)₃/C (NMTO-NTP/C) and (b) $Na_{0.66}Mn_{0.66}Ti_{0.34}O_2$ - $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3$ /C (NMTO-NTFP/C) aqueous full-cells at 2C rate.

Fig. S14. *Ex-situ* XPS spectra of Fe $2p_{3/2}$ and Ti $2p_{3/2}$ for $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3/C$ (NTFP/C) electrode at various charge-discharge states in the aqueous half cell.

Fig. S15. SEM images of $Na_{1.5}Ti_{1.5}Fe_{0.5}(PO_4)_3/C$ (NTFP/C) electrode after chargeddischarged (rate: 2 C) in the aqueous full cell for (a) 0 cycles, (b) 10 cycles, (c) 50 cycles, and (d) 100 cycles. The NTFP/C kept its original morphology after long time cycle test.