Supporting Information

Optimising oxygen diffusion in non-cubic, non-dilute perovskite oxides based on BiFeO₃

Haiwu Zhang*, and Roger A. De Souza*

Institute of Physical Chemistry, RWTH Aachen University 52056 Aachen, Germany E-mail: <u>zhang@pc.rwth-aachen.de</u>, <u>desouza@pc.rwth-aachen.de</u>

S1. Interatomic potential parameters¹⁻⁸.

The potential parameters for $Bi^{3+}-O^{2-}$ were taken directly from our previous simulations of $(Na_{0.5}Bi_{0.5})TiO_{3}$,² whilst the short range potential parameters and the shell-model parameters for Fe³⁺- O^{2-} were taken from G. C. Mather et al. in a study of Fe₂O₃ modified CaTiO₃.³ The potential parameters for $O^{2-}O^{2-}$ were refined slightly by fitting to the experimental structure parameters of BFO, including cubic $(Pm\bar{3}m)^9$, rhombohedral $(R3c)^{10}$ and monoclinic $(Cc)^{11}$. The cutoff is 15 Å for both MS and MD simulations.

	Buckingham	Shell model parameters						
M-O ²⁻ A / eV		ρ/Å	<i>C</i> / eV Å ⁶	Y/e	<i>k /</i> eV Å ⁻²			
Bi ³⁺ -O ²⁻	3265.681	0.3305	18.25	-2.0	145			
Fe ³⁺ -O ²⁻	1156.36	0.3299	0	4.97	304.7			
0 ²⁻ -0 ²⁻	22764.3	0.149	27.88	-2.67	74.92			

1) Potential parameters for component species

2) M⁺/M²⁺ dopants

	Buckingham	Shell model parameters				
M-0 ²⁻	A / eV	ρ/Å	<i>C</i> / eV Å ⁶	Y/e	<i>k /</i> eV Å ⁻²	
Li+-O ²⁻	292.3	0.3472	0	1.00	99999	
Na ⁺ -O ²⁻	611.10	0.3535	0	1.00	99999	
K+-O ²⁻	902.8	0.3698	0	1.00	99999	
Rb+-O ²⁻	1010.8	0.3793	0	1.00	99999	
Ni ²⁺ -O ²⁻	641.2	0.3372	0	2.00	99999	
Mg ²⁺ -O ²⁻	821.60	0.3242	0	2.00	9999.9	
Zn ²⁺ -O ²⁻	499.6	0.3595	0	2.05	10.28	
Co ²⁺ -O ²⁻	1491.7	0.2951	0	3.503	110.5	
Mn ²⁺ -O ²⁻	715.8	0.3464	0	3.00	81.2	
Cd ²⁺ -O ²⁻	876.0	0.35	0	N/A	N/A	
Ca ²⁺ -O ²⁻	1090.4	0.3437	0	3.315	110.2	
Sr ²⁺ -O ²⁻	959.1	0.3721	0	3.251	71.7	
Ba ²⁺ -O ²⁻	905.7	0.3976	0	1.46	14.78	

	Buckingham parameters				Shell model parameters		
M-0 ²⁻	A / eV	ρ/Å	<i>C</i> / eV Å ⁶	Y/e	<i>k /</i> eV Å ⁻²		
Al ³⁺ -O ²⁻	1114.9	0.3118	0	3.00	99999		
Cr ³⁺ -O ²⁻	1690.9	0.3010	0	0.97	67.00		
Sc ³⁺ -O ²⁻	1299.4	0.3312	0	3.00	99999		
In ³⁺ -O ²⁻	1495.6	0.3310	4.325	-6.10	1680.0		
Lu ³⁺ -O ²⁻	1336.8	0.3551	0	3.00	99999		
Y ³⁺ -O ²⁻	1309.6	0.3462	0	3.00	99999		
Gd ³⁺ -O ²⁻	1336.8	0.3551	0	3.00	99999		
Nd ³⁺ -O ²⁻	1379.9	0.3601	0	3.00	99999		
Pr ³⁺ -O ²⁻	2091.95	0.3399	0	3.0	99999		
La ³⁺ -O ²⁻	1545.21	0.3590	0	-0.25	145.0		
Si ⁴⁺ -O ²⁻	1283.91	0.32052	10.66	2.67	2399		
Ge ⁴⁺ -O ²⁻	1980.0	0.3172	53.7	N/A	N/A		
Ti ⁴⁺ -O ²⁻	877.2	0.38096	9.0	-35.862999	65974.0		
Sn ⁴⁺ -O ²⁻	1056.8	0.3683	0	1.58	2037.8		
Zr ⁴⁺ -O ²⁻	1608.1	0.3509	0	4.00	169.62		
Pb ⁴⁺ -O ²⁻	2164.8	0.3489	0	4.00	99999		
Ta ⁵⁺ -O ²⁻	1315.572	0.36905	0	-4.596	5916.77		
Nb ⁵⁺ -O ²⁻	1286.9583	0.371525	0	-4.596	5916.77		

3) M³⁺/M⁴⁺/M⁵⁺ dopants

S2. Crystal structure

Fig. S1. Crystal structure of BFO: a) rhombohedral (R3c); b) monoclinic (Cc) and c) cubic ($Pm\Im m$). Key: Bi (purple); Fe (silver); oxygen (red).

Chemical Lattice energy a/Å b/Å c/Å α, β, γ / ° order /eV cal 5.6325 5.6325 13.7613 90.000000, 90.000000, 120.00000 -137.958181 R3c 90.000000, 90.000000, 120.00000 aexp 5.5800 5.5800 13.8725 -90.000000, 90.000000, 90.000293 cal 5.6229 7.9519 5.6229 -137.952306 Сс ^bex 90.000000, 90.000000, 90.015000 5.6148 7.9725 5.6467 _ р _ 90.000186, 89.999306, 90.000186 cal 3.9760 --137.952312 Pm3m 90.000000, 89.999987, 90.000000 3.9916 cexp -_ -

Table S1. Calculated structural parameters and lattice energies of rhombohedral, monoclinic, andcubic BFO.

^aref. 9; ^bref. 10; ^cref. 11

S3. Full list of defect equations for dopant substitution at Bi and Fe sites.

1) Monovalent (M⁺) cations:

$$\frac{1}{2}M_{2}O + Bi_{Bi}^{\times} + O_{0}^{\times} \rightarrow M_{Bi}^{"} + V_{0}^{\bullet\bullet} + \frac{1}{2}Bi_{2}O_{3}$$

Bi site: $\frac{1}{2}M_{2}O + Fe_{Fe}^{\times} + O_{0}^{\times} \rightarrow M_{Fe}^{"} + V_{0}^{\bullet\bullet} + \frac{1}{2}Fe_{2}O_{3}$
Fe site: $\frac{1}{2}M_{2}O + Fe_{Fe}^{\times} + O_{0}^{\times} \rightarrow M_{Fe}^{"} + V_{0}^{\bullet\bullet} + \frac{1}{2}Fe_{2}O_{3}$

2) Divalent (M²⁺) cations:

$$MO + Bi_{Bi}^{\times} + \frac{1}{2}O_{0}^{\times} \rightarrow M_{Bi}^{'} + \frac{1}{2}V_{0}^{\bullet\bullet} + \frac{1}{2}Bi_{2}O_{3}$$

Bi site:

$$MO + Fe_{Fe}^{\times} + \frac{1}{2}O_{0}^{\times} \rightarrow M_{Fe}^{'} + \frac{1}{2}V_{0}^{\bullet \bullet} + \frac{1}{2}Fe_{2}O_{3}$$

Fe site:

3) Trivalent (M³⁺) cations:

$$\frac{1}{2}M_2O_3 + Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\times} + \frac{1}{2}Bi_2O_3$$

Bi site:

Fe site:
$$\frac{1}{2}M_2O_3 + Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\times} + \frac{1}{2}Fe_2O_3$$

4) Tetravalent (M⁴⁺) cations:

M⁴⁺ at Bi with Bi vacancy compensation:

$$MO_2 + \frac{4}{3}Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\bullet} + \frac{1}{3}V_{Bi}^{'''} + \frac{2}{3}Bi_2O_3$$

M⁴⁺ at Bi with Fe vacancy compensation:

$$MO_2 + Bi_{Bi}^{\times} + \frac{1}{3}Fe_{Fe}^{\times} \rightarrow M_{Bi}^{\bullet} + \frac{1}{3}V_{Fe}^{'''} + \frac{2}{3}Bi_2O_3 + \frac{1}{6}Fe_2O_3$$

M⁴⁺ at Fe with Bi vacancy compensation:

$$MO_2 + \frac{1}{3}Bi_{Bi}^{\times} + Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet} + \frac{1}{3}V_{Bi}^{'''} + \frac{2}{3}Fe_2O_3 + \frac{1}{6}Bi_2O_3$$

M⁴⁺ at Fe with Fe vacancy compensation:

$$MO_2 + \frac{4}{3}Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet} + \frac{1}{3}V_{Fe}^{'''} + \frac{2}{3}Fe_2O_3$$

M⁴⁺ at Bi with electron compensation:

$$MO_2 + Bi_{Bi}^{\times} + Fe_{Fe}^{\times} \rightarrow M_{Bi}^{\bullet} + e' + \frac{1}{2}Bi_2O_3 + \frac{1}{4}O_2$$

M⁴⁺ at Fe with electron compensation:

$$MO_2 + Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet} + e' + \frac{1}{2}Fe_2O_3 + \frac{1}{4}O_2$$

M⁴⁺ at Bi with oxygen vacancy compensation:

$$MO_2 + \frac{1}{2}V_0^{"} + Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\bullet} + \frac{1}{2}Bi_2O_3 + \frac{1}{2}O_0^{\times}$$

M⁴⁺ at Fe with oxygen vacancy compensation:

$$MO_2 + \frac{1}{2}V_0^{"} + Fe_{Fe}^{\times} \rightarrow M_{Bi}^{\bullet} + \frac{1}{2}Fe_2O_3 + \frac{1}{2}O_0^{\times}$$

5) Pentavalent (M⁵⁺) cations:

M⁵⁺ at Bi with Bi vacancy compensation:

$$M_2O_5 + \frac{5}{3}Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\bullet \bullet} + \frac{2}{3}V_{Bi}^{'''} + \frac{5}{6}Bi_2O_3$$

M⁵⁺ at Bi with Fe vacancy compensation:

$$\frac{1}{2}M_{2}O_{5} + Bi_{Bi}^{\times} + \frac{2}{3}Fe_{Fe}^{\times} \rightarrow M_{Bi}^{\bullet\bullet} + \frac{2}{3}V_{Fe}^{'''} + \frac{1}{2}Bi_{2}O_{3} + \frac{1}{3}Fe_{2}O_{3}$$

M⁵⁺ at Fe with Bi vacancy compensation:

$$\frac{1}{2}M_2O_5 + Fe_{Fe}^{\times} + \frac{2}{3}Bi_{Bi}^{\times} \rightarrow M_{Fe}^{\bullet\bullet} + \frac{2}{3}V_{Bi}^{'''} + \frac{1}{2}Fe_2O_3 + \frac{1}{3}Bi_2O_3$$

M⁵⁺ at Fe with Fe vacancy compensation:

$$\frac{1}{2}M_2O_5 + \frac{5}{3}Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet\bullet} + \frac{2}{3}V_{Fe}^{''} + \frac{5}{6}Fe_2O_3$$

 M^{5+} at Bi with formation of electronic species:

$$\frac{1}{2}M_2O_5 + Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\bullet\bullet} + 2e' + \frac{1}{2}Bi_2O_3 + \frac{1}{2}O_2$$

M⁵⁺ at Fe with formation of electronic species:

$$\frac{1}{2}M_2O_5 + Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet\bullet} + 2e' + \frac{1}{2}Fe_2O_3 + \frac{1}{2}O_2$$

M⁵⁺ at Bi with filling of existing oxygen vacancies from Bi-deficiency:

$$\frac{1}{2}M_2O_5 + V_0^{\bullet\bullet} + Bi_{Bi}^{\times} \rightarrow M_{Bi}^{\bullet\bullet} + O_0^{\times} + \frac{1}{2}Bi_2O_3$$

M⁵⁺ at Fe with filling of existing oxygen vacancies from Bi-deficiency:

$$\frac{1}{2}M_2O_5 + V_0^{\bullet\bullet} + Fe_{Fe}^{\times} \rightarrow M_{Fe}^{\bullet\bullet} + O_0^{\times} + \frac{1}{2}Fe_2O_3$$

S4. Dopant site-selectivity

Fig. S2. Calculated solution energies as a function of ion radius for (a) monovalent (M^+), (b) divalent (M^{2+}), (c) trivalent (M^{3+}) and (d) tetravalent (M^{4+}) at Bi and Fe sites in rhombohedral structure. Since the dopant radii for twelve-coordination values are not available for all the ions considered, the values for six-coordination from Shannon were used.¹²

Table S3. Calculated solution energies for M⁴⁺/M⁵⁺ dopants (in eV per dopant ion) for different charge compensation mechanisms in rhombohedral structure.

Site incorporation	Bi site				Fe site			
Charge compensation	$V_{Bi}^{'''}$	V _{Fe}	е	Filling V ₀	$V_{Bi}^{'''}$	V _{Fe}	е	Filling $V_0^{\bullet\bullet}$
Si ⁴⁺	17.73	17.78	20.41	14.25	-0.25	-0.20	2.43	-3.73
Ti ⁴⁺	10.70	10.75	13.38	7.22	1.50	1.55	4.18	-1.98
Pb ⁴⁺	4.54	4.60	7.23	1.07	6.25	6.31	8.94	2.78
Nb ⁵⁺	12.72	12.82	18.08	5.76	4.04	4.14	9.41	-2.91
Ta⁵+	10.03	10.13	15.39	-5.75	1.21	1.31	6.58	-5.75

S5. Oxide ion conductivity

Figure S3. A comparison of computed conductivities with experimental results: **a-c**, this work for BFeO with oxygen-vacancy site fraction being 1%, 0.67%, 0.33%, respectively; **d** this work for Ca-substituted BiFeO₃. Experimental results for **e**⁹, **f**¹³ and **g**¹⁴ are nominally stoichiometric (Bi/Fe=1), **h**¹⁵ is doped with 3% calcium, **i** is doped with 3% niobium, **j**¹⁶ is a solid solution of BiFeO₃ with 10% (K_{0.5}Bi_{0.5})TiO₃ (BFO-

10KBT) measured at 10 KHz. The activation energy of BFeO showed reasonable agreement with the experimental results (**e** and **f**, ΔE_{mig} ranges from 0.50 to 0.60 eV), demonstrating the significance of oxide ion migration in controlling the conductivity. The calculated activation energy of Ca-substituted BiFeO₃ (**d**) also agree well with experimental results (**h**). The dashed lines are guided to the eye only.

References

- 1 H. Zhang, Amr. H. H. Ramandan, and R. A. De Souza, J. Mater. Chem. A., 2018, 6, 9116-9123.
- 2 G. C. Mather, M. S. Islam, and F. M. Figueiredo, Adv. Funct. Mater., 2007, 17, 905-912.
- 3 J. R. Tolchard, P. R. Slater and M. S. Islam, Adv. Funct. Mater., 2007, 17, 2564-2571.
- 4 J. M. Clark, S. Nishimura, A.Yamada, and M. Saiful Islam, Angew. Chem. Int. Ed., 2012, 51, 13149.
- 5 G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys., 1985, 18, 1149-1161.
- 6 M. Cherry, M. S. Islam, and C. R. A. Catlow, J. Solid State Chemistry., 1995, 118, 125-132.
- 7 C. A. J. Fisher, M. S. Islam, and R. J. Brook, J. Solid State Chemistry., 1997, 128, 137-141.
- 8 G. C. Mather, Craig A.J. Fisher, and M. Saiful Islam, Chem. Mater., 2010, 22, 5912-5917.
- 9 W. Chen, A. J. Williams, L. Ortega-San-Martin, M. Li, D. C. Sinclair, W. Zhou, and J. P. Attfield, *Chem. Mater.*, 2009, **21**, 2085-2093.
- 10 V. F. Freitas, H. L. C. Grande, S. N. de Medeiros, I. A. Santos, L. F. Cotica, A. A. Coelho, *J. Alloy. Comp.*, 2008, **461**, 48-52.
- 11 R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, *Phys. Rev. B.*, 2008, **77**, 014110.
- 12 R. D. Shannon, Acta. Crystallogr. Sect. A., 1976, 32, 751-767.
- 13Y. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S.-H. Hong, *Solid State Commun.*, 2005, **135**, 133-137.
- 14 S. M. Selbach, T. Tybell, M. Einarsrud, and T. Grande, Adv. Mater., 2008, 20, 3692-3696.
- 15 N. Masó, and A. R. West, Chem. Mater., 2012, 24, 2127-2132.
- 16 E. T. Wefring, M.-A. Einarsrud and T. Grande, Phys. Chem. Chem. Phys., 2015, 17, 9420-9428.