Supplementary Information

Sandwich Structured WO₃ Nanoplatelets for Highly Efficient Photoelectrochemical Water Splitting

Guangwei Zheng,^{a,b} Jinshu Wang,*^a Guannan Zu,^a Haibing Che,^a Chen Lai,^a Hongyi Li,^a

Vignesh Murugadoss,^{b,c,d} Chao Yan,^e Jincheng Fan,^f and Zhanhu Guo*^b

^a Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Email: <u>wangjsh@bjut.edu.cn</u>

^b Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States. E-mail: <u>zguo10@utk.edu</u>

^c Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, Henan, China

^dSchool of Materials Science and Engineering, North University of China, Taiyuan 030051, China

^e School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China E-mail: chaoyan@just.edu.cn

^f College of Materials Science and Engineering, Changsha University of Science and

Technology, Changsha 410114, China E-mail: fanjincheng2009@163.com

Scheme S1. Schematic illustration of the forming process for CA-WO₃ and TA-WO₃ photoanodes films by a

facile hydrothermal method without using HCl/ or a hazardous chemical

Fig. S1 The high resolution SEM images of the CA-WO₃.

Fig. S2 (a, c, e, g) Top-view and (b, d, f, h) side-viewed SEM images of TA-WO₃ samples obtained at hydrothermal treatments for 4 h, 8 h, 12 h, 16 h respectively, followed by annealed at 500 °C for 2 h.

Fig. S3 (a) Top-view and (b) side-viewed SEM image of the WO₃ photoanodes films grown on FTO substrate at 180 °C for 12 h without a capping agent

Fig. S4 The C1s XPS-peak of (a) pure tartaric acid, (b) pure citric acid, (c) TA-WO₃ and (d) CA-WO₃ photoanodes prepared at hydrothermal treatment for 16 h followed by annealed at 500 $^{\circ}$ C for 2 h.

In the process of preparation of WO₃, we used deionized water to wash the WO₃ film after the hydrothermal treatment. After that, most of the organic ligands could be removed. Moreover, the WO₃ films were further annealed at 500 °C for 2 h in the air at a heating rate of 2 °C/min, the tartaric acid and citric acid are completely decomposed under the high calcination-temperature. To prove this point, we provided the C1s XPS-peak of pure tartaric acid, citric acid, TA-WO₃ and CA-WO₃ prepared at hydrothermal treatment for 16 h followed by annealed at 500 °C for 2 h, as shown in Fig. S4. It is clear that the C1s peak of the pure tartaric acid and citric acid exhibit strong characteristic peaks at around 284.9-289.2 eV which correspond to C-C, C-H, C-O, and O-C=O bonds. Whereas, the TA-WO₃ and CA-WO₃ photoanodes showed an only peak at 284.7 eV which can be attributed to CO₂ adsorbent on the surface of WO₃.

The optical band gap of CA-WO₃-12h and TA-WO₃-16h could be determined by the equation $\alpha hv = A(hv - E_g)^n$, where α , h, v are the absorption coefficient, Planck's constant, and frequency of light, respectively, and A, E_g , n are constant related of material, band gap energy, and n equals to 2 for WO₃ as an indirect semiconductor, respectively. Therefore, the band gap energy for the WO₃

products are obtained for the plotted $(\alpha hv)^{1/2}$ as a function of hv. According to the Tauc plots, the energy band gaps of CA-WO₃-12h and TA-WO₃-16h are estimated to be 2.65 and 2.69 eV, respectively.

Fig. S6 Chopped photocurrent-potential (J-V) plots of WO₃ photoanode fabricated without capping agent.

As shown in Fig. S3, the WO₃ photoanodes synthesized without capping agent were composed of nanoparticles and exhibited the photocurrent density of 0.33 mA cm⁻² at 1.23 V *vs* RHE (Fig. S6). This value is much lower compared with the TA-WO₃. A large number of grain boundaries in the nanoparticle films result in increasing resistance and interfacial charge recombination, thus impeding the electron transfer to the back-contacted conductive. Different from WO₃ photoanodes (without capping agent), the TA-WO₃ electrodes were composed of plate-like structure that were nearly perpendicular grown on FTO substrate. Due to the direct electrical pathways for photogenerated carriers, 2-D plate-like structure can efficiently facilitate the transportation of photogenerated electron-hole pairs. This structures are capable of reducing grain boundaries and defects that result in less

recombination of electron-hole pairs, and consequently 2-D TA-WO₃ photoanodes demonstrated superior PEC properties compared to nanocrystalline particles.

Fig. S7 Electrochemical surface area analysis for the three samples in the non-faradaic region at different scan rates, varying from 10 mV s⁻¹ to 190 mV s⁻¹: (a) TA-WO₃-16h, (b) CA-WO₃-16h, (c) CA-WO₃-12h, (d) scan rate dependence of the current densities.

samples	I ₍₀₀₂₎ /I ₍₂₀₀₎
CA-WO ₃ -4h ^[a]	0.62
CA-WO ₃ -8h ^[b]	0.99
CA-WO ₃ -12h ^[c]	1.31
CA-WO ₃ -16h ^[d]	1.68

Table S1 XRD peak intensity ratios of (002) to (200) of different samples

[a][b][c][d] CA-WO₃ samples obtained at hydrothermal treatments for 4 h, 8 h, 12 h, 16 h, respectivly, followed

by annealing at 500 °C for 2 h

Table S2 EIS fitting results of R_{ct} for CA-WO₃-12h, CA-WO₃-16h, and TA-WO₃-16h photoanodes

Samples	$R_{s}\left(\Omega\right)$	%error	$R_{ct}\left(\Omega\right)$	%error	C (mF)	%error
CA-WO ₃ -12h ^[a]	19.52	3.34	570	3.09	14.39	4.45
CA-WO ₃ -16h ^[b]	20.02	2.70	1041	2.39	9.90	3.19
TA-WO ₃ -16h ^[c]	27.06	6.01	1213	5.51	9.57	7.42

[a][b] CA-WO₃ samples obtained at hydrothermal treatments for 12 h and 16 h, respectivly, followed by annealed

at 500 °C for 2 h $\,$

[c] TA-WO₃ samples obtained at hydrothermal treatments for 16 h, followed by annealed at 500 °C for 2 h

Preparation method	Morphology (thickness of film)	Electrolyte	J (mA cm ⁻²) (applied potential)	IPCE (%)	Ref
Solvothermal	Nanoplates(850 nm)	0.1 M Na ₂ SO ₄	1.42 (1.23 V vs. RHE	~38 (400 nm at 1.23V vs RHE)	1
Solvothermal	Flake-like(3.6 µm)	0.1 M Na ₂ SO ₄	~1.9 (1.2 V vs. Ag/AgCl)	~36 (400 nm at 1.2 V vs Ag/AgCl)	2
Solvothermal	Nanosheet(2 µm)	0.1 M Na ₂ SO ₄	1.62 (1.25 V vs. Ag/AgCl)	~20 (400 nm at 0.67 V vs Ag/AgCl)	3
Solvothermal	Nnanoflake (5.6µm)	0.1 M Na ₂ SO ₄	1.43 (1.23 V vs. RHE)	~70% (480 nm at 1.23 V vs. RHE)	4
Hydrothermal	Nanoplate (2.3 µm)	0.5 M Na ₂ SO ₄	1.88 (1.3 V vs. Ag/AgCl)	~65 (1.0 V vs. Ag/AgCl)	5
Glancing angle deposition	Nanorod (3 µm)	0.5 M KPi +1M Na ₂ SO ₃	2.15 (1.23 V vs. RHE)	40 (385 nm at 1.23 V vs. RHE)	6
Hydrothermal	Nanoflakes (1.2 µm)	0.1 M Na ₂ SO ₄	2.49 (1.23 V vs. RHE)	23.25 (440 nm at 1.23 V vs. RHE)	7
Hydrothermal	Tree-like nanoarrays (1.2 μm)	0.5 M Na ₂ SO ₄	1.35 (1.23 V vs. RHE)	\ \	8
Polymer- assisted deposition	Nanoparticles	0.1 M KPi butter	1.45 (1.23 V vs. RHE)	١	9
Seed-mediated hydrothermal	Microplates (2.4 µm)	0.1 M Na ₂ SO ₄	1.9 (0.6 V vs. Ag/AgCl)	١	10
Hydrothermal	Nanorods (800 nm)	0.5 M H ₂ SO ₄	2.26 (1.23 V vs. RHE)	~90% (350 nm at 1.23 V vs. RHE)	11
Pulsed laser deposition (PLD)	Tree-like nanoporous (3.2 μm)	0.5 M KPi + 0.5 M H ₂ SO4	1.8 (1.23 V vs. RHE)	78% (350 nm at 1.23 V <i>vs</i> . RHE	12
Hydrothermal	Microcrystals	$1 \text{ M H}_2 \text{SO}_4$	0.45 (0.8 V <i>vs.</i> RHE)	~2.7% (300 nm at 0.8 V vs. RHE)	13
Hydrothermal	Nanoparticles (2.9 μm)	0.5 M H ₂ SO ₄	2.7 mA (1.4 V <i>vs.</i> RHE)	\	14
Pulsed laser deposition (PLD)	Nanoneedles (17.6 µm)	0.1 M H ₂ SO ₄	2.4 (1.23 V vs. RHE)	50% (410 nm at 1.23 V vs. RHE)	15
Solvothermal	Nanoflakes (3 µm)	0.1 M Na ₂ SO ₄	1.1 (1.23 V <i>vs</i> . RHE)	~45% (320 nm at 1.23 V vs. RHE)	16

Table S3 An overview of representative WO₃ photoanodes reported for efficient photoelectrochemical water splitting

Table S3 (continued)

Preparation method	Morphology (thickness of film)	Electrolyte	J (mA cm ⁻²) (applied potential)	IPCE (%)	Ref
Hydrothermal	Nanoplates (1.3 µm)	0.2 M Na ₂ SO ₄	1.6 (1.2 V vs. Ag/AgCl)	55% (355 nm at 1.0 V <i>vs</i> . Ag/AgCl)	17
PLD	Nano-tree like (10 μm)	1 M H ₂ SO ₄	1.85 (0.8 V vs. RHE)	63 (400 nm at 1.0 V vs. RHE)	18
Hydrothermal	Nanorods (1.5 µm)	0.5 M Na ₂ SO ₄	1.05 (1.1 V vs. SCE)	\	19
Hydrothermal	Nanoplates (2 µm)	1 M H ₂ SO ₄	1.2 (1.23 V. vs. RHE)	40 (350 nm at 1.23 V vs. RHE)	20
Hydrothermal	Nanoplates (4.4 µm)	0.1 M Na ₂ SO ₄	3.16 (1.23 V vs. RHE)	79 (400 nm at 1.23 V vs. RHE)	This work

RHE: reversible hydrogen electrode; SCE: saturated calomel electrode

References

1 Q. Y. Zeng, J. H. Li, J. Bai, X, J. Li, L. G. Xia, B. X. Zhou, *Appl. Catal. B: Environ.*, 2017, **202**, 388–396

- 2 F. Amano, D. Li, B. Ohtani, Chem. Commun., 2010, 46, 2769-2771
- 3 J. J. Zhang, P. Zhang, T. Wang, J. L. Gong, Nano Energy, 2015, 11, 189–195
- 4 J. Z. Su, X. J. Feng, J. D. Sloppy, L. J. Guo, C. A. Grimes, Nano Lett., 2011,11, 203-208
- 5 X. Y. Feng, Y. B. Chen, Z. X. Qin, M. L. Wang, L. J. Guo, ACS Appl. Mater. Interfaces, 2016,

8, 18089-18096

6 M. G. Lee, D. H. Kim, W. Sohn, C. W. Moon, H. Park, S. H. Lee, H. W. Jang, Nano Energy, 2016, **28**, 250–260

7 J. J. Zhang, X. X. Chang, C. C. Li, A. Li, S. S. Liu, T. Wang, J. L. Gong, J. Mater. Chem. A, 2018, 6, 3350–3354

- 8 R. K. Zhang, F. Y. Ning, S. M. Xu, L. Zhou, M. F. Shao, M. Wei, Electrochimica Acta, 2018,274, 217–223
- 9 J. H. Kim, B. J. Lee, P. Wang, M. H. Son, J. S. Lee, Appl. Catal. A: Gen., 2016, 521, 233-239
- 10 M. Park, J. H. Seo, H. Song, K. M. Nam, J. Phys. Chem. C, 2016, 120, 9192-9199
- 11 S. S. Kalanur, Y. J. Hwang, S. Y. Chae, O. S. Joo, J. Mater. Chem. A, 2013, 1, 3479-3488
- 12 S. Shin, H. S. Han, J. S. Kim, I. J. Park, M. H. Lee, K. S. Hong, I. S. Cho, J. Mater. Chem. A, 2015, **3**, 12920–12926
- 13 J. Zhang, Z. H. Liu, Z. F. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 9684–9691
- 14 W. Z. Li, J. Li, X. Wang, J. Ma, Q. Y. Chen, Int. J. Hydrogen Energy, 2010, 35, 13137–13145
- 15 C. Fàbrega, S. Murcia-López, D. Monllor-Satoca. J.D. Prades, M.D. Hernández-Alonso, G.

Penelas, J.R. Morante, T. Andreu, Appl. Catal. B: Environ., 2016, 189, 133-140

- 16 C. W. Wang, C. F. Tang, X. Y. Zhang, L. Qian, H. G. Yang, Prog. Nat. Sci-Mater., 2018, 28, 200–204
- 17 W. H. Liu, Y. H. Yang, F. Q. Zhan, D. W. Li, Y. M. Li, X. D. Tang, W. Z. Li, J. Li, Int. J. Hydrogen Energy, 2018, 43, 8770–8778
- 18 M. Balandeh, A. Mezzetti, A. Tacca, S. Leonardi, G. Marra, G. Divitini, C. Ducati, L. Meda,F. Di Fonzo, J. Mater. Chem. A, 2015, 3, 6110–6117
- 19 Y. Liu, L. Zhao, J. Z. Su, M. T. Li, L. J. Guo, ACS Appl. Mater. Interfaces 2015, 7, 3532–3538
 20 H. Y. Wu, M. Xu, P. M. Da, W. J. Li, D. S. Jia, G. F. Zheng, Phys. Chem. Chem. Phys., 2013, 15, 16138–16142