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Experimental section

Synthesis of materials

The chemicals in the experiment were of analytical grade (A.R.) and directly used without further
treatment (Table. S1). The NaNbO3; sample was synthesized by using a hydrothermal method
similar to the literature.’ The compounds of 0.05 M Nb,0s and 0.35 mol NaOH (10 M) were
dissolved in 35 mL deionized water, and dispersed well in an ultrasonic bath for 15 min under
100 W power conditions. Secondly, the mixture was transferred into a 50 mL Teflon-lined
stainless steel autoclave, which was heated in an electric oven (160 ‘C, 18 h), and then cooled
down naturally. Next, the yielded precipitates were collected by centrifugal filtration and washed
with deionized water several times to neutral, and washed with absolute alcohol at the last time.
Finally, the precipitates were dried overnight at 100 ‘C to obtain the products. The synthetic
yield of the NaNbO; of the experiment is about 530 mg (excluding the loss during sample
collection), which is 92.3% of the theoretical yield (574 mg).

Characterizations

The phases and crystalline properties were determined by X-ray diffraction (XRD). The surface
chemical structures were checked by X-ray photoelectron spectra (XPS). The morphology and
size of the particles were analyzed by scanning electron microscopy (SEM) and transmission
electron microscopy (TEM). The crystalline microstructures were resolved by high-resolution
TEM (HRTEM) and selected area electron diffraction (SAED). The elemental composition and
distribution were measured by X-ray energy dispersive spectra (EDS) and mapping.

Electrochemical measurements

The electrodes were prepared by the following two steps: firstly, a well-dispersed mixture of 70
wt% active materials (as-synthesized NNO or commercial graphite KS6), 20 wt% conductive agent
(15 wt% acetylene black (AB)+5 wt% superconductive carbon black) and 10 wt% polyvinylidene
fluoride binder (PVDF, which was dissolved in N-methyl-2-pyrrolidone (NMP)) were cast onto the
current collectors (Cu foil and carbon-coated Al foil were used as the collectors for the anode and
cathode respectively, and the thickness was 15 um), followed by drying in a vacuum oven at
110 C for 12 h; secondly, the electrodes were punched into disks with a diameter of 12 mm, and
the mass loading of active materials was about 1.2 mg cm2. The electrochemical performances
were examined by cyclic voltammetry (CV) and galvanostatistic charge-discharge (GCD) tests via
CHI660E electrochemical working stations and Neware-CT-4008 testers. Tests for NNO and KS6
electrodes were conducted in half-cells by using the type 2032 coin cells with a certain working
electrode (WE), a Li plate as both the counter electrode (CE) and reference electrode (RE), and
one piece of glass fiber (GF) as the separator. Tests for NNO//KS6 Li-DIBs s were conducted via
full-cells with type 2032 coin cells with equal mass ratio of active materials of NNO anode and
KS6 cathode, and the NNO anode was pre-charged (pre-lithiated) at 0.1 A g for 4.5 cycles
(Fig. S6) before the assembly. The electrolytes used in the tests were 1 M LiPFs/EC:EMC:DMC
(1:1:1) /1% VC (LBC-305-01, CAPCHEM). All cell assemblies were performed in a high pure
Ar-filled dry glove box (MIKROUNA, O; and H,0O < 0.1 ppm) and all tests were carried out at room
temperature (about 25°C) except the assigned tests at high (40°C) and low (-20°C)
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temperatures (more detailed information about the abovementioned chemicals, reagents and
materials can be seen in Table S1). Herein, the specific capacity (Cm, mAh g1), energy density (Em,
Wh kg1) and power density (Pm, kW kg?) of the NNO//KS6 Li-DIBs are calculated according to the
Equations S(1), S(2) and S(3).

Cm=It/3.6m S(1)
Em=CmV s(2)
P=3.6Eq/t 5(3)

Where m refers to the masses of active electrode materials of both anode and cathode (g), which
does not include the masses of the binder and acetylene black, and the electrolyte involved in
the redox reactions is not considered either; V, I and t refer to the discharging voltage platforms
(V), current (A) and discharging time (s), respectively.
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Fig. S2 The pseudocapacitive and diffusion-controlled contributions to charge
storage in the NNO electrode (the shaded region is the identified pseudocapacitive
contribution).
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Fig. S5 Ex situ XPS for survey (a), Li 1s (b), O 1s (c), C 1s (d) and F 1s (e) in
pristine and fully discharged/charged states of the NNO electrode.
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Fig. S7 Electrochemical performance of the KS6 electrode: CV plots for the
first three cycles at 0.3 mV s (a); GCD curves for the first five cycles at 0.1 A
g (b) and for the 5" cycle at 0.1-3.2 A g (c); specific capacity, rate capability
and coulombic efficiency at 0.1-3.2 A g! (d-e); cycling behavior at 1 A g (f).

Graphite (KS6) was chosen as the cathode for the construction of the
NNO//KS6 Li-DIBs. Fig. S7a-c show the CV plots and GCD curves, which show
more than three pairs of redox peaks and charging/discharging plateaus in
potential range of 2.5-5.3 V, suggesting the multi-steps co-insertions of PF¢
anions and solvents in the graphite layers.* Note that the charging specific
capacity of the KS6 electrode for the first two cycles is so large, which may be owing
to the highly irreversible kinetics (i.e. the intercalation rate is far faster than the
corresponding de-intercalation rate) at the low charging rates. The specific capacity,
rate capability and cycling behavior are shown in Fig. S7d-f, showing that the
KS6 electrode exhibits the specific capacity values of 92-64 mAh g at 0.1-3.2
A g?! and 83% retention for 1000 cycles at 1 A g (Table S2, ESI). Such an
excellent performance of KS6 can be a good cathode material used in Li-DIBs
and will contribute to the advanced performance of the NNO//KS6 Li-DIBs.
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Table S1. Chemicals, reagents and materials used in the study.

Chemicals,
reagents and
materials

Nb,0s
NaOH

Graphite

AB

Superconductive
carbon black

NMP
PVDF
Electrolytes
Li plate

Cu foil

Carbon coated-
Al foil

Glass
microfiber filters

Cell components

Type

AR
AR

KS6

Battery grade

Battery grade

AR

Battery grade
LBC-305-01

15.6*%0.45 mm

200*0.015

222*0.015

GF/D 2.7 um;
1823-025

CR-2032

Company

SinoPharm

SinoPharm

TiMCAL

Kermel

CAPCHEM

China Energy

GuangZhou
JiaYuan
GuagZhou
NaNuo

Whatman

ShenZhen
TianChenHe

Characteristics

purity>99.99%

purity>96.0%

D90: 5.8-7.1 um; Interlayer distance:

0.3354-0.3360 nm;
SSA: 20 m?g;

Density-Scott: 0.07 g cm3;

/
/

purity>99.0%

/

1 M LiPF¢/EC:EMC:DMC (1:1:1) /1% VC

15.6*%0.45 mm

Total thickness: 15 um; weight: 87 g m

Total thickness: 17 um; Strength: 192 Mpa

Diameter: 25 mm; Thickness: 675 um;

weight: 121 g m™

/
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Table S2. Specific capacity and cycling behavior of the NNO and KS6 electrodes.

Specific capacity (mAh g) and cycling behavior of the NNO and KS6 electrodes

Current
densit

ensity / 0.1
(Ag?)

NNO 130

KS6 92

Cycling

behavior
Retention% /
2 A g (NNO)
/1 A g (KS6)
/ 1000 cycles

185%

83%




Table S3. Performance summary of the NNO//KS6 Li-DIBs at room temperature

(25°C).
Cycling behavi
Working Energy Power ‘;cr::int?o:;or
Cell system voltage density density repeated cycIZs
Vv Wh kg* kw kg* ’
/ / & / & current density
181-95.7 0.53-1.32 95%/100/2 A g
0
0.01-5.0 77.2-55.6 2.86-5.60
997 8.70 83%/200/2 A gt
268-161 0.70-1.60 121%/100/2 A g?
NNO//KS6 0.01-5.2 122-79.0 3.97-7.30 104%/150/2 A gt
-26.1 -10.80 88%/200/2 A gt
329205 074165  S2X/50/2Ag
' ' 71%/100/2 A g
0.01-5.4 199-154 3.80-8.18
60 13.40 56%/150/2 A g?

42%/200/2 A g?
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Table S4. A comparison for the performance of the NNO//KS6 Li-DIBs in the study

with some reported Li-DIBs.

Cycling behavior

. Working Ener.gy Pow?r / retention%,
Li-DIBs voltage density density repeated cycles Refs.

Vv Wh kg kW kg ’

/ / & / & current density
Graphite//Graphite 0.01-5.2 108 / 67%/50/0.05 A g >
Si-compound//Graphite 0-3 54 / 53%/100/0.1 A gt 6
Nb,0s//Graphite 1.5-3.5 52 / 84%/100/0.1Agt 7
TiO.//Graphite 1.5-3.7 36 / 88%/50/0.1Ag? 8
RGO//Graphite 0-4.0 70 1.33 74%/50/1.33Agt 9

Li-DIBs based on some recently reported perovskite anodes

KNio.1Coo.oF3//Graphite(918)  0.5-5.2 152 0.9 78%/200/2 Ag* 10
Nao.ssNio.ssCOo55F3.56//KS6  0.01-5.0 155.1 0.6 67%/200/2 A g 11
181-95.7 0.53-1.32  95%/100/2 A g™
0.01-5.0 77.2-55.6 2.86-5.60
-22.7 -8.70 83%/200/2 A g™
268-161 0.70-1.60  121%/100/2A g This
NNO//Ks6 0.01-52  122-79.0 3.97-7.30 work
-26.1 -10.80 88%/200/2 A g™
329-205 0.74-1.65 82%/50/2 A g™
0.01-5.4 199-154 3.80-8.18
-60 -13.40 71%/100/2 A g




Table S5. Performance summary of the NNO//KS6 Li-DIBs under high (40°C ) and low

(-20°C) temperatures.

Cycling behavior

T Working Enertgy Pow?r / retention%,
Cell system /C voltage density density repeated cycles
Vv Wh kg kw kg* ’
/ / & / & current density
314-219 1.1-2.1
60%/100/2 A g
40  0.015.2 162-90 4.0-7.4 6/100/2Ag
-51 -13.2
NNO//KS6 71%/2000/2 A gt
106-73 0.5-1.3
-20 0.01-5.2 61-48 3.1-6.8 70%/3000/2 A gt
-18 -8.7

60%/4000/2 A g
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