Supporting Information:

Facile fabrication of hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in Zn-air battery

Bin He^{ab}, Chunyu Xu^b, Yawen Tang^b, Yong Qian^b, Hongke Liu^{b*}, Qingli Hao^{a*} and Zhi Su^{b*}

^{*a*} Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China.

E-mail: qinglihao@njust.edu.cn

^b Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China

E-mail: zhisu@njnu.edu.cn, liuhongke@njnu.edu.cn

catalyst	Overpotential	Reference
	(mV) at 10mA cm ⁻²	
NiCoFeP-HN	294	This work
CoP/NCNHP	310	1
СоР	400	2
NiCoP/NC PHCs	297	3
NiCoP/C nanoboxe	330	4
Co-NC@CoP-NC	330	5
Co-P/Co-PO ₄	380	6
(Co/Fe) ₄ O ₄ Cubane	300	7
h-Co-MnOxP _{0.21}	370	8
NiCoP/C	297	9
Ni ₂ P/CoP	320	10
CoNi-P-NS	209	11
MnCoP nanoparticle	330	12
Co/MnO@GC-700	358	13
Co _{1.2} Fe/C	260	14
CoCx/FeCo@C/rGO	390	15
Ni _{0.75} Fe _{0.25} (OH) _x	310	16

Table S1. Comparison of the overpotential for the reported OER catalysts with NiCoFeP-HN*

*the OER test was examined on the glassy carbon electrode in 1.0 M KOH solution at room temperature.

Fig. S1. (a) SEM and (b) TEM images of the Ni-Co precursor.

Fig. S2. XRD patterns of (a) the Ni-Co precursor, (b) NiCoFe-PBA-HN and (c) NiCoFeP-HN.

Fig. S3. FTIR spectra of the as-prepared NiCoFe-PBA-HN and NiCoFeP-HN samples.

Fig. S4. (a) HAADF-STEM image and (b) EDX cross-sectional line scan profiles of the **NiCoFeP-HN**.

Fig. S5. XPS survey spectra of NiCoFeP-HN.

Fig. S6. N_2 adsorption-desorption isotherms and pore size distribution of the as-prepared NiCoFeP-HN.

Fig. S7. (a) SEM image and (b)XRD patterns of the NiCoP-NP.

Fig. S8. (a) XRD pattern of the as-prepared Ni₂P, CoP and Fe₂P, (b) LSV curve of of the as-prepared Ni₂P, CoP, Fe₂P and **NiCoFeP-HN** for OER.

Fig. S9. Cyclic voltammogram (CV) curves of (a) NiCoFeP-HN and (b) NiCoP-NP.

Fig. S10. XPS spectra of the **NiCoFeP-HN** after OER test: (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) P 2p.

Fig. S11. A LED lamp (~ 3.0 V) could be powered up by two Zn-air batteries in serious with the NiCoFeP-HN + Pt/C catalyst as air-cathode.

Fig. S12. Discharge polarization curves and the corresponding power density curves.

Fig. S13. The enlarged 1st and corresponding cycle of the discharge-charge voltage profiles of Zn-air batteries with (a) the $RuO_2 + Pt/C$ catalyst and (b) the **NiCoFeP-HN** + Pt/C catalyst.

Reference

- 1 Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, J. Am. Chem. Soc, 2018, 140, 2610-2618.
- 2 X. Zhang, L. Huang, Q. Wang and S. Dong, J. Mater. Chem. A, 2017, 5, 18839-18844.
- 4 P. He, X.-Y. Yu and X. W. D. Lou, Angew. Chem., Int.Ed., 2017, 56, 3897-3900.
- 5 X. Li, Q. Jiang, S. Dou, L. Deng, J. Huo and S. Wang, J. Mater. Chem. A, 2016, 4, 15836-15840.
- 6 Y. Yang, H. Fei, G. Ruan and J. M. Tour, Adv. Mater., 2015, 27, 3175-3180.
- 7 J. C. Li, Q. W. Zhou, J. Pu, J. Y. Liu, Y.-N. Zhou, H. G. Zhang, H. X. Ma, ACS Catal., 2019, 9, 3878-3887.
- 8 T. Zhang, S. Zhang, S. Cao, Q. Yao and J. Y. Lee, Chem. Mater., 2018, 30, 8270-8279.
- 9 Y. Zhao, G. Fan, L. Yang, Y. Lin and F. Li, Nanoscale, 2018, 10, 13555-13564.
- 10 X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang and B. Chen, ACS Appl. Mater. Interfaces, 2017, 9, 23222-23229.
- 11 X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai and D. Yu, *Energy Environ. Sci.*, 2017, 10, 893-899.
- 12 D. Li, H. Baydoun, C. N. Verani and S. L. Brock, J. Am. Chem. Soc., 2016, 138, 4006-4009.
- 13 J. Xu, H. Zhang, P. Xu, R. Wang, Y. Tong, Q. Lu and F. Gao, Nanoscale, 2018, 10, 13702-13712.
- 14 J. Du, G. Liu, F. Li, Y. Zhu and L. Sun, Adv. Sci., 2019, 6, 1900117-1900124.
- 15 H. Fang, T. Huang, Y. Sun, B. Kang, D. Liang, S. Yao, J. Yu, M. M. Dinesh, S. Wu, J. Y. Lee and S. Mao, J. Catal., 2019, 371, 185-195.
- 16 T. Tian, M. Zheng, J. Lin, X. Meng and Y. Ding, Chem. Commun., 2019, 55, 1044-1047.