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Derivation of Nernst equation

We derive the Nernst equation for the cell reaction

SSE + xA ←→ D1 + D2 + · · · (1)

The corresponding half-cell reactions are the SSE reaction at the working electrode (WE)

interface

SSE + xA+ + x e− ←→ D1 + D2 + · · · (2)

and the A-metal counter electrode (CE) reaction

xA ←→ xA+ + x e− (3)

For electrochemical equilibrium of reactions (2) and (3), the conditions must be fulfilled

that the stoichiometric sums of the chemical potentials of reactants and of products are

equal,

µSSE + xµA+ + xµWE
e− = µD1 + µD2 + · · · (4)

xµA = xµA+ + xµCE
e− (5)
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In equilibrium, the chemical potential µA+ of A+ is constant throughout the electrolyte

and therefore identical at CE and WE. The equilibrium potential of reaction (2) vs. the

reference potential defined by reaction (3) is given by the difference of the electron chemical

potentials of WE and CE divided by the electron charge,

Φeq =
1

−e
(µWE

e− − µ
CE
e− )

=
1

−e x
(µD1 + µD2 + · · · − µSSE − xµA)

= −∆G

ex
(6)

In the first step, we resolved and inserted equations (4) and (5) for the electron chemical

potentials of WE and CE, respectively. In the second step, we used the fact that the

chemical potential of a compound is equal to its Gibbs free energy per unit.

Equation (6) is not the Nernst equation in its typical form, which expresses the equilib-

rium potential as a function of the activities ai of reactants and products. The typical form

of the Nernst equation is simply obtained from equation (6) by inserting the definitions

of the reactant and product activities µi = µ0
i + kBT log(ai/a

0), with Boltzmann constant

kB, temperature T , standard activity a0, and standard chemical potential µ0
i .

Stoichiometry stability window: Simplest model

We develop a simple model for the dependence of the SSE stoichiometry An+zM (where A

= Li, Na, . . . ) as a function of the electrode potential Φ that the SSE is in contact with.

Very similar models were derived for the Li-insertion into electro-active materials [1]. We

first derive a simplified expression of the Gibbs free energy G(z) := GAn+zM for |z| � n, i.e.

for small deviations from the stable composition. For this purpose, the Gibbs free energy

(per unit cell) G = U+pV −TS is first approximated by G = E0−TSconf, in which only the

energy E0 at T = 0 K and the configurational entropy Sconf of A-site occupation are taken

into account. The configurational entropy carries the dominant part of the dependence of

the Gibbs free energy on the A-stoichiometry. It therefore cannot be neglected for deriving

z as a function of Φ. Other contributions like the pV term, the vibrational zero-point

energy, the vibrational internal energy, and the vibrational entropy are neglected, which

is well justified if an error of ±0.1 V is acceptable on the calculated stability potential

window.

For |z| � n, the energy of adding one A to the general composition An+zM is approx-

imately constant, i.e. E0 ≈ E0
0 + ∆E

+/−
0 z, for z ≷ 0, respectively. Here, as explained in

S2



detail in the main article, it is taken into account that the energy ∆E
+/−
0 of adding A is

discontinuous at z = 0, resulting in two different constant values ∆E+
0 > ∆E−

0 for z ≷ 0,

respectively.

Within this simplified 1-type A-site model, it is assumed that all A-sites are ener-

getically equivalent. In the next section, a more general 2-type A-site model is derived.

Assuming a total number n + m of A-sites, either occupied or unoccupied, per unit cell

of the material An+zM, the configurational entropy Sconf results from the combinatorics of

filling n+ z out of a total of n+m sites:

Sconf =
1

Nc

kB log

(
Nc (n+m)

Nc (n+ z)

)
(7)

≈ kB ((n+m) log(n+m)− (n+ z) log(n+ z)− (m− z) log(m− z)) (8)

where kB is the Boltzmann constant and where Stirling’s approximation was applied, be-

cause the total number Nc of unit cells in the entire crystal is very large.

According to the equations derived in the main article, we obtain for the A-chemical

potential in the SSE

µA
SSE(z) =

dG

dz
= ∆E

+/−
0 − kBT log

(
n+m

n+ z
− 1

)
(9)

where the +/− refer to z > 0 and z < 0, respectively, and for the corresponding equilibrium

potential

Φeq = −1

e

(
µA

SSE(z)− µA
A

)
(10)

= ΦI/II +
kBT

e
log

(
n+m

n+ z
− 1

)
(11)

where

ΦI/II := −(∆E
+/−
0 − µA

A)/e (12)

again for z > 0 and z < 0, respectively, and with ΦI < ΦII because ∆E+
0 > ∆E−

0 .

Vice versa, for a given electrode potential Φ, the equilibrium stoichiometry deviation z

of the SSE in contact with the respective electrode is obtained by resolving Equation (11)

with Φeq = Φ:

z =


(n+m)

1+exp((Φ−ΦI)/γ)
− n ,Φ < ΦI + δ

0 ,ΦI + δ ≤ Φ ≤ ΦII + δ

(n+m)
1+exp((Φ−ΦII)/γ)

− n ,ΦII + δ < Φ

(13)
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Figure S1: The stoichiometry deviation z in the general SSE material An+zM as a function

of the potential Φ as derived from the two models in the limit |z| � n: The ‘1 type A-

site model’ considers all A-sites energetically equivalent, whereas the ‘2 type A-site model’

takes into account two energetically different types of A-sites. The values of the model

parameters used for the plotted curves are given in the text.

where γ = kBT
e

and δ = γ log(m/n). Thus, the limits of the stoichiometry stability window

are given by Φstoi
red = ΦI + δ and Φstoi

ox = ΦII + δ. For an acceptable error of ±0.1 V on the

stability limits, the shift δ can be neglected: For a practical SSE material, the number

of occupied and unoccupied A-sites will be of the same order of magnitude. Even for

m/n = 10±1, it follows |δ| ≈ 2 γ with γ = 0.025 V for T ≈ 300 K.

Figure S1 plots the deviation z as a function of the electrode potential Φ as described by

Equation (13) for an arbitrary choice of n = 1, m = 1, Φstoi
red = −0.5 V, Φstoi

ox = +0.5 V, and

for γ = 0.025 V corresponding to T ≈ 300 K. The stoichiometry dramatically changes in

two steep steps below and above Φstoi
red and Φstoi

ox , respectively, the width of each step being

defined by the scale γ. The step below Φstoi
red corresponds to SSE reduction, whereas the

step above Φstoi
ox corresponds to SSE oxidation. Within the stoichiometry stability window,

i.e. for potentials Φstoi
red ≤ Φ ≤ Φstoi

ox , the stoichiometry deviation is equal to zero, z = 0,

and the SSE is stable in the composition AnM.

Within the present model we assume that all n + m A-sites within the SSE material

AnM are energetically equivalent, i.e. every distribution of the n A over the n+m sites has

the same energy. However, in general, there will be energetic variations between different
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distributions. In the following section, we present an extended model which takes into

account two different classes of A-sites in the material AnM: one class of n occupied

ground-state sites, and another class of m vacant excited-state sites.

Stoichiometry stability window: Model with two classes of A-sites

We consider a general solid-state electrolyte (SSE) material with n occupied and m unoc-

cupied A-sites per unit cell, the latter unoccupied sites referred to as vacancies V, in its

stable stoichiometry. Further, it is assumed that the occupied and unoccupied A-sites are

separated by a non-zero energy gap, which is plausible if the vacancies correspond to inter-

stitial sites or if they are generated by a dopant. In order to distinguish these two classes of

A-sites, the m unoccupied ‘excited’ state sites are denoted on the left-hand side, whereas

the n occupied ‘ground’ state sites are denoted on the right-hand side of the composition

formula VmMAn .

If more A is added to the stable configuration VmMAn , it has to occupy vacant sites

of the class of ‘excited’ state sites. Consequently, the additional A is added on the left-

hand side to yield AδVm–δMAn . Vice versa, if A is extracted from the stable configuration

VmMAn , vacancies are generated among the previously occupied ‘ground’ state sites de-

noted on the right-hand side to yield VmMAn– εVε. Of course, also combinations of both

processes are possible, such that the general state of the SSE material can be described

by the formula AxVm –xMAn+yV–y , where 0 ≤ x ≤ m and −n ≤ y ≤ 0. Furthermore, as

discussed for the simpler model in the main article, the total stoichiometry n+ x+ y of A

must be compared against the stable stoichiometry n, since the latter separates two dis-

tinct energetic manifolds for compositions with A-excess, i.e. x+ y > 0, and A-deficiency,

i.e. x+ y < 0, respectively.

According to the equations derived in the main article, the equilibrium potential of the

A-exchange reactions with a general electrode material is given by

Φeq = −1

e

(
µA

SSE(z)− µA
A

)
(14)

where µA
A is the chemical potential of A-metal defining the reference potential Φref = −µA

A/e.

The chemical potential µA
SSE of species A for the general SSE composition AxVm –xMAn+yV–y

is given by the derivative of the Gibbs free energy G(x, y) := GAxVm−xMAn+yV−y w.r.t. the
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total A-stoichiometry deviation z = x+ y,

µA
SSE(z) =

dG

dz
(15)

= px(z)
∂G

∂x

∣∣∣∣
(x(z),y(z))

+ py(z)
∂G

∂y

∣∣∣∣
(x(z),y(z))

(16)

where px = dx/dz and py = dy/dz = 1− px are the thermodynamic weights of the excited

state sites and ground state sites, respectively. For given z = x + y, the values of x(z),

y(z), px(z), and py(z) are fixed by the thermodynamic equilibrium requirement of minimum

G(x, y), as calculated below.

In the following, an expression for the Gibbs free energy G(x, y) is derived for |x|, |y| �
n, i.e. for small deviations from the stable composition. As for the simpler model presented

in the previous section, the total Gibbs free energy G = U +pV −TS is first approximated

byG = E0−TSconf, i.e. only the energy E0 at T = 0 K and the configuration entropy Sconf of

the combinatorics of A-site occupation are taken into account. For |x|, |y| � n, the energies

∆Ee
0 and ∆Eg

0 of adding one A either to the excited state or to the ground state class of

A-sites in AxVm –xMAn+yV–y , respectively, are approximately constant. Furthermore, in

the same way as for the simpler model, the energy discontinuity between x + y < 0 and

x+ y > 0 must be taken into account by a term ∆E
+/−
0 (x+ y), resulting in an expression

for the total energy in the limit |x|, |y| � n,

E0 ≈ E0
0 + ∆Ee

0 x+ ∆Eg
0 y + ∆E

+/−
0 (x+ y) (17)

for x+ y ≷ 0, respectively.

The configuration entropy has two contributions, Sconf = Se + Sg, resulting from the

combinatorics of filling excited state or ground state A-sites, respectively:

Se =
1

Nc

kB log

(
Ncm

Nc x

)
(18)

≈ kB (m log(m)− x log(x)− (m− x) log(m− x)) (19)

where Stirling’s approximation has been applied, 0 ≤ x ≤ m, and kB is the Boltzmann

constant. Likewise,

Sg ≈ kB (n log(n)− (n+ y) log(n+ y)− (−y) log(−y)) (20)

where −n ≤ y ≤ 0.
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In order to find the thermodynamic weights px/y, first the thermodynamic equilibrium

value of x for a fixed value of the total stoichiometry deviation z = x+ y must be derived

that is defined by the minimum of the function G(x, y = z − x), i.e. by the condition

dG(x, y = z − x)/dx = 0, which is equivalent to the condition ∂G/∂x = ∂G/∂y or

y =
−n(m− x)

x exp(∆E/kBT ) + (m− x)
(21)

where ∆E = ∆Ee
0 −∆Eg

0 is the energy difference between excited and ground state sites.

Inserting y = z − x and resolving for x, we obtain

x =
z (e∆E/kBT − 1)− n−m

2(e∆E/kBT − 1)
+

+

√
(z (e∆E/kBT − 1)− n−m)2 + 4m(n+ z)(e∆E/kBT − 1)

2(e∆E/kBT − 1)
(22)

where the positive solution of the quadratic equation has been used according to the

requirement 0 ≤ x. Thus, the following expression is obtained for px = dx/dz,

px =
1

2
+

1

2

m− n+ z (e∆E/kBT − 1)√
(z (e∆E/kBT − 1)− n−m)2 + 4m(n+ z)(e∆E/kBT − 1)

(23)

The chemical potential as a function of z follows from Equation (16),

µA
SSE,+/− = ∆E

+/−
0 + px ∆Ee

0 + py ∆Eg
0 − px kBT log

(m
x
− 1
)

− py kBT log

(
n

n+ y
− 1

)
(24)

for z > 0 and z < 0, respectively, where x as a function of z is given by Equation (22),

y = z − x, px is given by Equation (23), and py = 1− px. The corresponding equilibrium

potential Φeq as a function of z is obtained from Equation (14),

Φeq = ΦI/II + px ∆Φe + py ∆Φg + px
kBT

e
log
(m
x
− 1
)

+ py
kBT

e
log

(
n

n+ y
− 1

)
(25)

where ΦI/II = −(∆E
+/−
0 −µA

A)/e for z > 0 and z < 0, respectively, and ∆Φe/g = −∆E
e/g
0 /e.

Unlike for the simpler model presented in the main article, expression (25) cannot be

analytically resolved to obtain the equilibrium stoichiometry deviation z as a function of

an applied potential Φ. Nevertheless, the latter can be plotted as shown in Figure S1 for an
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arbitrary choice of m = n = 1, ΦI/II = ∓0.5 V, ∆Φe/g = ∓0.15 V, and for kBT = 0.025 eV.

The main qualitative features of the simpler model are preserved, i.e. the stoichiometry

changes in two steep steps starting at approximately ΦI/II, the width of each step being

defined by the scale kBT/e. However, the energetic splitting between excited and ground

state sites results in a smoother shape of the steps around ΦI/II and the turning points of

the steps are shifted to approximately ΦI/II + ∆Φe/g.

Ewald vs. DFT energies
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Figure S2: Ewald (Coulomb) energies vs. DFT energies for selected SSE materials. Plotted

are the total energies of the supercells given in Table 1 of the main article for a number

of random configurations across partially occupied sites, with plotted energies centered at

the mean energy for each respective supercell.
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