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Figure S1 (a) TEM image and (b) HRTEM image of the HG2.

Figure S2: Prepared graphene hydrogel and graphene electrode prepared by rolling.

Figure S3 (a) XRD patterns of rGO and HG2. (b) TGA curves of rGO and HG2 samples in Ar at a 
heating rate of 5 °C min-1.



Figure S4 Nitrogen adsorption-desorption isotherm (a), and pore width distribution (b) for rGO and 
HG2.

Figure S5: (a) Nyquist plots of rGO and HG2 electrodes at room temperature. (b) UV-vis 
absorption spectra of a 0.17 mM HQ in 1 M H2SO4 solution and the electrolyte which was after 
500s CD at low current density of 2 A g-1 and soak for two days in the three-electrode device. 

Figure S6 Cycling stability at 20 A g-1 of the HG2 electrode at room temperature.



Figure S7 XRD patterns of Ti3AlC2, Ti3C2Tx and N-Ti3C2Tx.

Figure S8 (a) XPS spectrum for N-Ti3C2Tx. (B) High-resolution XPS spectra of C 1s (b), Ti 2p (c) 
and N 1s (d) for N-Ti3C2Tx.



Figure S9 Nyquist plots of Ti3C2Tx and N-Ti3C2Tx at room temperature.

Figure S10 (a) CV curves under different voltage windows for asymmetric device. (b) In situ 
potential-time curves of cathode and anode at 1A g-1 at room temperature

Figure S11 Nyquist plots for asymmetric device which is before and after the charge/discharge 
cycle at room temperature.



Figure S12 (a) CVs of the asymmetric device in gel electrolyte at different scan rate. (b) CDs of 
the asymmetric device in gel electrolyte at different current density at room temperature.

Table S1 Comparison of the electrochemical performance of supercapacitor recently reported at 
room temperature.

Materials Electrolyte Voltage 

window

Capacitance 

of cell

(F g-1) 

Current 

density

Energy 

density

(Wh kg−1)

Power 

density

(W kg−1)

Cycle 

numbers

Capacity 

retention

Ref

Ti3C2Tx//rGO 1 M H2SO4 1.1 V 48 2 mV s-1 8 50 1000 76% [1]

Ti3C2Tx @NC//Ti3C2Tx 

@NC

1 M H2SO4 1.1 V 176.9 1 A g-1 29.7 582.3 5000 91.9% [2]

G@MnO2//porous 

graphene

1 M Na2SO4 2 V 56 0.5 A g-1 30.6 197 10000 91.5% [3]

Ti3C2Tx-Bi2O3//Ti3C2Tx-

Bi2O3

1 M KOH 1.2 V 76 0.5 A g-1 15.2 567 5000 85% [4]

Ti3C2Tx//PEDOT@rGO

Ti3C2Tx//PPy@rGO

Ti3C2Tx// PANI@rGO

3 M H2SO4

3 M H2SO4

3 M H2SO4

1.4 V

1.4 V

1.45 V

47

59

57

5 mV s-1

5 mV s-1

5 mV s-1

13

16

17

170

200

200

10000

20000

20000

80%

75%

88.42%

[5]

Ti3C2//TC-9 1 M KOH 1.5 V 49.3 1 A g-1 15.4 750.2 5000 82.4% [6]

Ti3C2Tx//RuO2 1 M H2SO4 1.5 V 93 5 mV s-1 29

24

3800

26000

20000 86% [7]

PPy/rGO//NCs 3 M LiCl 1.6 V 43.2 20 mV s-1 15.8 140 10000 88.7% [8]

MnCo2S4//rGO 3 M KOH 1.6 V 88 1 A g-1 31.3 800 5000 89% [9]

400-KOH-Ti3C2//400-

KOH-Ti3C2

1 M H2SO4 1.6 V 66.4 1 A g-1 23.6 300 5000 90.4% [10]

Ti3C2Tx//rGO 3 M H2SO4

+50 mM LiBr

1.8 V 76.5 1 A g-1 34.4

23.7

1000

22500

10000 –– [11]

N-Ti3C2Tx //HG2 1 M H2SO4 1.7 V 102 0.5 A g-1 41 425 18000 83% a

26.7 42500 a

a This work
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