Supporting Information

Dual luminescent covalent organic framework for nitro-explosives detection

Muhammad Faheem,^a Saba Aziz,^a Xiaofei Jing,^a Tingting Ma,^a Junyi Du,^{*b} Fuxing Sun,^c Yuyang Tian^{*a} and Guangzhan Zhu^a

^a Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China. E-mail: <u>tianyy100@nenu.edu.cn</u>
^b School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China, E-mail: <u>junyi_du@bit.edu.cn</u>

^C State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Table of Contents

Section	Detail	Page No.
i	¹³ C CP/MAS Solid-state NMR spectrum of DL-COF	S3
ii	PXRD pattern of DL-COF with simulated AA and AB-stacking structures	S4
iii	Pore size of simulated AA-stacking structure	S5
iv	Simulated structures AA-stacking on base of ETTA orientation	S6
v	Pawley refined simulation patterns of DL-COF	S7
vi	Thermal stability test (TGA, DSC)	S8
vii	Chemical stability test XRD and FT-IR analysis	S9
viii	UV-Visible absorbance of DL-COF and tested nitro explosives analytes	S10
ix	XPS measurements of DL-COF and 4-NP+DL-COF	S11
x	Limit of detection (LOD) calculations of nitro explosives analytes	S12-S16
xi	Quenching efficiency (%) against concentrations of nitro explosives analytes	S17
xii	Fluorescence quenching pattern of non-explosives analytes	S18
xiii	Comparison study of tested nitro explosives analytes with COFs and MOFs	S19-S23
xiv	TCSPC calculation for average fluorescence lifetime measurement	S24
xv	References	S25

(i) ¹³C CP/MAS Solid-state NMR spectrum of DL-COF

Fig. S1 ¹³C CP/MAS Solid-state NMR spectrum of DL-COF: The triangle (\triangle) represent chemical shift of imine carbon and the asterisks (*) represent chemical shifts of aromatic carbons.

(ii) PXRD pattern of DL-COF with simulated AA and AB-stacking structures

Fig. S2 (a) Experimentally observed PXRD pattern of DL-COF, (b) Simulated PXRD pattern for AB-stacking structure and (c) Simulated PXRD pattern for AA-stacking structure.

(iii) Pore size of simulated AA-stacking structure

Fig. S3 Pore size of simulated AA-stacking structure

(iv) Simulated structures of AA-stacking on base of ETTA orientation

Fig. S4 Simulated AA-stacking structures on base of ETTA orientation

(iv) Pawley refined simulation patterns of DL-COF

Fig. S5 XRD patterns of the DL-COF: (a) experimental, (b) Pawley refined and (c) difference between experimental and calculated data.

(vi) Thermal stability test of DL-COF

Fig. S6 (a) TGA and (b) DSC curves of the DL-COF

(vii) Chemical stability tests of DL-COF

Fig. S7 (a) PXRD patterns of the DL-COF after treatment in different chemical environments (b) FTIR spectra of the DL-COF after treatment in different chemical environments.

(viii) UV-Visible absorbance of DL-COF and tested nitro explosive analytes

Fig. S8 UV-visible absorbance of DL-COF and DL-COF with nitro explosive analytes.

(ix) XPS measurements of DL-COF and 4-NP+DL-COF

Fig. S9 XPS spectra of DL-COF (black curves) and 4-NP+DL-COF (red curves). The C 1s signal at 284.5 eV, which is attributed to aromatic carbons. The O 1s at a binding energy of 533 eV and 532 eV are due to air contamination, water and hydroxyl groups in the sample. [21]

(x) Limit of detection (LOD) calculations of nitro explosive analytes

Fig. S10 Linear region of fluorescence intensity of DL-COF upon incremental addition of TNP at λ em = 311 nm (upon λ ex = 264 nm) at room temperature.

Calculation of Detection limit (LOD) for TNP:

Slope from graph (m)	2.10026E+8 M ⁻¹
Standard deviation (σ)	4.0124
Limit of detection $(3\sigma/m)$	57.31 nM (13.10ppb)

Fig. S11 Linear region of fluorescence intensity of DL-COF upon incremental addition of DNP at λ em = 311 nm (upon λ ex = 264 nm) at room temperature.

Calculation of Detection limit (LOD) for DNP:

Slope from graph (m)	2.58546E+8 M ⁻¹
Standard deviation (σ)	4.0124
Limit of detection $(3\sigma/m)$	46.50 nM (8.56 ppb)

Fig. S12 Linear region of fluorescence intensity of DL-COF upon incremental addition of DNT at λ em = 311 nm (upon λ ex = 264 nm) at room temperature.

Calculation of Detection limit (LOD) for DNT:

Slope from graph (m)	2.09984E+8 M ⁻¹
Standard deviation (σ)	4.0124
Limit of detection $(3\sigma/m)$	57.32 nM (10.40 ppb)

Fig. S13 Linear region of fluorescence intensity of DL-COF upon incremental addition of 4-NP at λ em = 311 nm (upon λ ex = 264 nm) at room temperature.

Calculation of Detection limit (LOD) for 4-NP:

Slope from graph (m)	3.24864E+8 M ⁻¹
Standard deviation (σ)	4.0124
Limit of detection (3σ/m)	37.05 nM (5.15ppb)

Fig. S14 Linear region of fluorescence intensity of DL-COF upon incremental addition of 4-NT at λ em = 311 nm (upon λ ex = 264 nm) at room temperature.

Calculation of Detection limit (LOD) for 4-NT:

Slope from graph (m)	2.38247E+8 M ⁻¹
Standard deviation (σ)	4.0124
Limit of detection (3o/m)	50.52 nM (6.92ppb)

(xi) Quenching efficiency (%) against concentrations of nitro explosive analytes

Fig. S15 Quenching efficiency (%) against various concentrations of nitro explosive analytes.

Fig. S16 Fluorescence quenching pattern of non-explosives analytes at $\lambda em = 311$ nm (upon $\lambda ex = 264$ nm) at room temperature.

(xiii) Comparison study of tested nitro explosive analytes with reported COFs and MOFs

Materials	Ksv (M ⁻¹)	LOD	Medium	Ref.
DL-COF	2.42×10 ⁶	57.31×10 ⁻⁹ M	EtOH	This
		(13.10 ppb		work
Covalent organic	frameworks	s (COFs)		I
TAPB-TFP-COF	3.20×10 ⁴	NA	MeCN	[1]
iPrTAPB-TFPB-COF	3.0×10 ⁴	NA	MeCN	[1]
iPrTAPB-TFP-COF	1.8×10 ⁴	NA	MeCN	[1]
Metal organic f	rameworks (MOFs)		I
[(CH ₃)2NH ₂].2[Eu ₆ (OH) ₈ (ADBA) ₆ (H ₂ O) ₆] (DMF) ₁₅	1.282×10 ⁵	NA	D. Water	[2]
$\{[Zn(C_{34}H_{18}O_8)_{0.5}(C_{20}N_2H_{16})_{0.5}].[0.5(C_{20}N_2H_{16})\}_n$	8.10×10 ⁴	NA	DMF	[3]
$\{[0.2Me_2NH_2][Zn_8(ad)_4(BPDC)_6]\cdot G\}_n$	6.40×10 ⁴	12.90×10 ⁻⁶ M	Water	[4]
[Cd(NDC) _{0.5} (PCA)] _n	3.50×10 ⁴	NA	MeCN	[5]
[Zn ₂ (NDC) ₂ (bpy)].Gx	0.40×10 ⁴	NA	EtOH	[6]

Table S1. Comparison study of TNP with other COFs and MOFs.

Materials	Ksv (M⁻¹)	LOD	Medium	Ref.
DL-COF	4.28 ×10 ⁶	46.50×10 ⁻⁹	EtOH	This
		M (8.56 ppb		work
Covalent	organic fram	eworks (COFs)		
TRIPTA-COF	2.13×10 ⁶	NA	MeCN	[7]
TfpBDH-COF	3.5×10 ³	NA	Isopropylalcohol	[8]
Py-Azine COF	2.10×10 ³	NA	MeCN	[9]
Metal or	ganic frame	works (MOFs)		
In-ADBA	8.99×10 ⁴	NA	Water	[2]
FJI-H15	2.54×10 ⁴	NA	Dimethylacetamide	[10]
UiO-68-mtpdc/etpdc	2.30×10 ⁴	NA	Methanol	[11]

Table S2. Comparison study of DNP with other COFs and MOFs.

Materials	Ksv (M⁻¹)	LOD	Medium	Ref.
DL-COF	3.71 ×10 ⁶	57.32×10 ⁻⁹ M	EtOH	This
		(10.40 ppb)		work
Covalent	organic fram	eworks (COFs)		
TRIPTA-COF	1.19×10 ⁶	NA	MeCN	[7]
Py-Azine COF	9.10×10 ³	NA	MeCN	[9]
iPrTAPB-TFP-COF	8.80×10 ³	NA	MeCN	[1]
TAPB-TFP-COF	8.70×10 ³	NA	MeCN	[1]
iPrTAPB-TFPB-COF	1.20×10 ³	NA	MeCN	[1]
Metal or	ganic frame	works (MOFs)		
[Y _{1.8} Eu _{0.2} (PDA) ₃ (H ₂ O)1]·2H ₂	5.01×10 ⁴	NA	MeCN	[12]
[Zn ₂ (NDC) ₂ (bpy)]·Gx	5.1×10 ³	NA	EtOH	[13]
Eu ₃ (MFDA) ₄ (NO ₃)(DMF) ₃	1.30×10 ³	NA	DMF	[14]

Table S3. Comparison study of DNT with other COFs and MOFs.

Materials	Ksv (M ⁻¹)	LOD	Medium	Ref.
DL-COF	3.18 ×10 ⁶	37.05×10 ⁻⁹ M	EtOH	This
		(5.15 ppb)		work
Covalent	organic fram	eworks (COFs)		
TRIPTA-COF	5.80×10 ⁵	NA	MeCN	[7]
Py-Azine COF	5.90×10 ²	NA	MeCN	[9]
Metal or	rganic frame	works (MOFs)		L
UPC-21	3.09 ×10 ⁶	0.0896 ppm	DMSO	[15]
In-ADBA	5.11 ×10 ⁴	NA	Water	[2]
BUT-13	4.70 ×10 ⁴	NA	Water	[16]
BUT-12	4.20×10 ⁴	NA	Water	[16]
[Zn ₂ (TPOM)(NH ₂ -BDC) ₂]·4H ₂ O	2.17 ×10 ⁴	NA	DMF	[17]
UPC-17	1.26 ×10 ⁴	NA	THF	[18]
[Zn(L)(H₂O)]·H₂O	1.25 ×10 ⁴	3.34 µM	Water	[19]
UiO-68-mtpdc/etpdc	7.20 ×10 ³	NA	Methanol	[11]

Table S4. Comparison study of 4-NP with other COFs and MOFs.

Materials	Ksv (M ⁻¹)	LOD	Medium	Ref.
DL-COF	1.56 ×10 ⁶	50.52×10 ⁻⁹	EtOH	This
		M (6.92 ppb		work
Covalent	organic fram	eworks (COFs)		
Py-Azine COF	4.5 ×10 ²	NA	MeCN	[9]
Metal or	ganic frame	works (MOFs)		
[Y _{1.8} Eu _{0.2} (PDA) ₃ (H ₂ O)1]·2H ₂	1.1×10 ⁴	NA	MeCN	[12]
[Zn ₂ (NDC) ₂ (bpy)]·Gx	1.16×10 ⁴	NA	EtOH	[13]
[Tb0.2Y0.18(PDA)3(H2O)1]·2H2O	0.39×10 ⁴	NA	MeCN	[20]

Table S5. Comparison study of 4-NT with other COFs and MOFs.

(xiv) TCSPC calculation for average fluorescence lifetime measurement

 Table S6. TCSPC calculation of DL-COF and nitro explosives analytes

Sample	T1	T2	B1	B2	A1=[B1/SumB]	A2=[B2/SumB]	< >	χ²
							(ns)	
DL-COF	1.3413	12.1924	0.106	0.015	0.8760	0.1239	2.68	1.18
DL-COF+TNP	1.4514	6.5424	0.077	0.020	0.7938	0.2061	2.50	1.47
DL-COF+DNP	1.0415	7.9345	0.120	0.012	0.9090	0.0909	1.66	0.94
DL-COF+DNT	0.9924	7.0937	0.111	0.015	0.8809	0.1190	1.71	0.93
DL-COF+4-NP	1.4020	6.3395	0.084	0.013	0.8659	0.1340	2.06	0.92
DL-COF+4-NT	1.2320	7.5945	0.090	0.015	0.8571	0.1428	2.14	1.07

Where, $\langle I \rangle$ = A1T1+A2T2 and χ^2 is the accuracy factor. [7]

(xv) References

- 1. D. Kaleeswaran, P. Vishnoi, and R. Murugavel, J. Mater. Chem. C, 2015, 3, 7159--7171.
- 2. X. Liu, B. Liu, G. Li, and Y. Liu, J. Mater. Chem. A, 2018, 6, 17177–17185.
- B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li, and H. C. Zhou, J. Am. Chem. Soc., 2016, 138, 6204–6216.
- 4. B. Joarder, A. V. Desai, P. Samanta, S. Mukherjee, and S. K. Ghosh, *Chem. Eur. J.*, 2015, **21**, 965-969.
- 5. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh, *Angew. Chem. Int. Ed.* 2013, **52**, 2881–2885.
- 6. K. S. Asha, A. Bhattacharyya, and S. Mandal, J. Mater. Chem. C, 2014, 2, 10073-10081.
- 7. R. Gomes, and A. Bhumik, RSC Adv., 2016, 6, 28047 28054.
- G. Das, B. P. Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma, and R. Banerjee, *Chem. Sci.*, 2015, 6, 3931–3939.
- S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, and D. Jiang, J. Am. Chem. Soc., 2013, 135, 17310–17313.
- 10. H. Xue, D. Song, C. Liu, G. Lyu, D. Yuan, F. Jiang, Q. Chen, and M. Hong, *Chem. Eur. J.*, 2018, **24**, 11033-11041.
- 11. Q. Y. Li, Z. Ma, W. Q. Zhang, J. L. Xu, W. Wei, H. Lu, X. Zhao, and X. J. Wang, *Chem. Commun.*, 2016, **52**, 11284-11287.
- 12. D. K. Singha, P. Majee, S. K. Mondal, and P. Mahata, *Eur. J. Inorg. Chem.*, 2015, 1390–1397.
- 13. K. S. Asha, K. Bhattacharyya, and S. Mandal, J. Mater. Chem. C, 2014, 2, 10073–10081.
- X. Zhou, H. Li, H. Xiao, L. Li, Q. Zhao, T. Yang, J. Zuo, and W. Huang, *Dalton Trans.*, 2013, 42, 5718–5723.
- 15. M. Zhang, L. Zhang, Z. Xiao, Q. Zhang, R. Wang, F. Dai, and D. Sun, *Sci. Rep.*, 2016, 6, 20672.
- 16. C. F. Zhang, L. G. Qiu, F. Ke, Y. J. Zhu, Y. P. Yuan, G. S. Xu, and X. Jiang, *J. Mater. Chem. A*, 2013, **1**, 14329-14334.
- R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu, and X. Liu, *J. Mater. Chem. A*, 2016,
 4, 15494-15500.
- 18. T. K. Pal, N. Chatterjee, and P. K. Bharadwaj, Inorg. Chem., 2016, 55, 1741-1747.
- 19. X. Y. Guo, F. Zhao, J. J. Liu, Z. L. Liu, and Y. Q. Wang, *J. Mater. Chem. A*, 2017, **5**, 20035-20043.
- 20. D. K. Singha, S. Bhattacharya, P. Majee, S. K. Mondal, M. Kumar, and P. Mahata, *J. Mater. Chem. A*, 2014, **2**, 20908–20915.
- H. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng and X.Feng, *Nat. Commun.*, 2016, 7, 1-8.

Graphical Abstract.

