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Fig S1. XRD pattern of the as-prepared ZrNiSn0.99Sb0.01 (ZNSS) powders.
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Fig S2. (a) XPS spectra for the as-prepared ZNSS with ultra-thin Al2O3 interface layer 
and (b) the sintered ALD coated ZNSS sample.  
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Fig S3. XRD pattern of the samples with different ALD cycles after SPS process.
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Fig S4. Schematic diagram and band structure diagram of ZrNiSn and different Zr 
vacancies. The impurity level is located at the position of the blue dotted line in Fig. 
b and c.

Table S1. The position of the bottom of conduction band of different Zr vacancies 
and the interface barrier between energy band of different Zr vacancies and matrix 
ZNSS

Zr(1-x)NiSn bottom of conduction band energy barrier

x=0 0.236 ev 0 ev

x=1/32 0.411 ev 0.175 ev

x=1/16 0.447 ev 0.211 ev

1/32 Zr vacancy 

1/16 Zr vacancy 



Fig S5. (a) Temperature dependence of Thermal diffusion coefficient (D) with 
different ALD cycles. (b) Temperature dependent specific heat capacity Cp for ZNSS.
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These m* values were used to plot Pisarenko lines that demonstrate carrier 
concentration dependence of the Seebeck coefficient in degenerate semiconductors 
via the following equation:
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where m*
d is the density of states (DOS) effective mass, and kB, e, and h are the 

Boltzmann constant, elementary charge, and the Planck constant, respectively. By 
utilizing the S and n values at room temperature, the m*

d was determined and 
compared with literature data. 

Fig. S6 Carrier-concentration- dependent Seebeck coefficient (S).



Fig. S7 (a) HRTEM images at the ZnO/BTS interface of pre-sintered powder. (b)Low 
magnification TEM image, (c) (d) HRTEM images at the ZrO2/ZNSS interface of 
sintered sample
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