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 Supporting Information Notes

Supplementary note 1

Electrochemistry: The nucleation overpotential and Coulombic efficiency was performed on 

a LAND CT2001A battery testing system. For the Li plating/stripping cycling efficiency 

measurement, the batteries were first cycled in a potential range of 0-1 V at 50 μA for five 

cycles to stablize the SEI and remove surface contaminations. 1 mAh·cm-2 (or 3 mAh·cm-2, 5 

mAh·cm-2) of Li was then deposited onto the working electrodes (GDY and N-GDY) and 

charged to 0.5 V at various current densities from 1 to 5 mA·cm-2 for each cycle. The 

Coulombic efficiency was calculated based on the ratio of Li stripping to plating. Rate 

capability of N-GDY electrodes were measured at current densities ranging from 0.5 to 6 

mA·cm-2 for 1 h in both the stripping/plating processes of each cycle. The long-term cycling 

stability and voltage hysteresis were investigated through a symmetric Li/Li test, GDY and N-

GDY hosts were firstly plated by Li metal with a pre-stored capacity of 2 mAh·cm-2 (or 5 

mAh·cm-2, 8 mAh·cm-2), then cycled at various current densities with a constant areal 

capacity of 1 mAh·cm-2 (or 3 mAh·cm-2, 5 mAh·cm-2). Electrochemical impedance 

spectroscopy (EIS) was measured after different electrochemical cycles by applying an  

alternating voltage of 5 mV over the frequency ranging from 10-2 to 105 Hz.

Full cells were constructed with a LiNi0.5Co0.2Mn0.3O2 (NCM) cathode and a N-GDY@Li 

anode with a pre-stored capacity of of 5 mAh·cm-2 (or pure Li metal). The NCM electrodes 

were punched into circle discs of ca. 0.33 cm2 and the areal mass loading of NCM was ~3 mg 

cm-2. Cyclic voltammetry (CV) measurements were performed in a potential range of 2.8-4.3 

V at a scan rate of 0.1 mV s-1. Galvanostatic charge-discharge cycling tests of N-

GDY@Li||NCM and Li||NCM full cells were carried out in a potential range of 2.8-4.3 V at 

0.2 C, corresponding to a current density of 0.096 mA·cm-2
.
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Supplementary note 2

DFT simulations: Density functional theory (DFT) simulations were performed using the 

Vienna Ab-initio Simulation Package (VASP) package. The generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was employed to 

describe the electronic exchange and correlation effects. Uniform G-centered k-points 

meshes with a resolution of 2π*0.03 Å-1 and Methfessel-Paxton electronic smearing were 

adopted for the integration in the Brillouin zone for geometric optimization. The simulation 

was run with a cutoff energy of 500 eV throughout the computations. These settings ensure 

convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded 

until all forces on atoms are less than 1 meV Å-1 and the total stress tensor is within 0.01 GPa 

of the target value. The adsorption energy (∆Eads) was estimated by the following formula:

ΔE(ads) = [E(surface+n*Li)-E(surface)-n* E(Li)]/n

where n is the number of adsorbed Li atoms, E(surface+n*Li) is the total energy of the 

surface adsorbed n Li atoms, E(surface) is the total energy of the Cu (111) or carbon-based 

surfaces, and E(Li) is the total energy of one Li atom. 
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 Supporting Information Figures

Fig. S1. Schematic structure of a single-layer graphdiyne.

Fig. S2. Schematic of the synthetic procedure of the N-GDY host.
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Fig. S3. Digital photographs of the pristine Cu foam, GDY host after the low-temperature 

wet-chemistry synthesis, and N-GDY host after the thermal nitridation process.

Fig. S4. SEM images of the pristine Cu foam at different magnifications.
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Fig. S5. SEM images of the as-obtained GDY foam at different magnifications.

Fig. S6. N2 adsorption-desorption profiles of N-GDY powders that are stripped from the 3D 

Cu foam.
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Fig. S7. HRTEM image of the as-obtained N-GDY nanowalls.

Fig. S8. Full-scan XPS spectra of GDY and N-GDY hosts displaying C, O and N signals.
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Fig. S9. High-resolution C 1s spectrum of the GDY foam.

Fig. S10. Optimized models of the Li atom binding to non-doped graphdiyne.
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Fig. S11. The initial nucleation potentials and nucleation overpotentials (μn) of the Cu foam, 

Cu@DGY and N-DGY electrodes.

Fig. S12. Cross-section SEM images of a, b) the N-GDY and c, d) Cu foam substrates after 

depositing Li under two different conditions of 1 mAh·cm-2/1 mA·cm-2 and 3 mAh·cm-2/3 

mA·cm-2 at the same 20th cycle. 
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Fig. S13. Schematic diagram of cycling half cells for measurement of the Li plating/ stripping 

Coulombic efficiency during long-term cycling.

Fig. S14. Schematic diagram of cycling symmetric cells for measurement of the cycling 

stability and voltage hysteresis during long-term cycling.
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Fig. S15. SEM images of the GDY@Li and N-GDY@Li electrodes after the 25th Li 

stripping/plating (3 mA·cm-2 and 3 mAh·cm-2) in their charged states with a residue of 2 

mAh·cm-2 Li. 

Fig. S16. SEM images of the commercial NCM powders at different magnifications.
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 Supporting Information Tables

Table S1. The calculated binding energies of Li atom with Cu, VG, un-doped GDY and 

different functional groups in N-GDY. 

E(surface+n*Li) E(surface) E(Li) ΔE(ads)

Cu -128.03115268 -125.56868228 -0.07691098 -2.38556

VG -664.90602816 -661.65694673 -0.07691098 -3.1721705

GDY -1245.5995159 -1243.1136841 -0.07691098 -2.4089208

N(α) -1244.7034133 -1242.1785241 -0.07691098 -2.4479782

N(β) -1244.2592898 -1241.8330269 -0.07691098 -2.3493519

N(γ) -1244.3618429 -1241.1065557 -0.07691098 -3.1783762

N(δ) -1243.2989976 -1239.6315907 -0.07691098 -3.5904959

N(ε) -1239.9926123 -1238.3202938 -0.07691098 -1.5954075

Table S2. Comparison of the electrochemical performances between the N-GDY hybrid host 

and other porous Cu and carbon allotropes hosts previously reported.

3D porous matrix 
host

Current density
(mA·cm-2)

Cycling capacity
(mAh·cm-2)

Stable cycling 
numbers

Ref.

1 1 >720
5 1 >260
1 5 >30

N-GDY host

3 3 >175

This 
work

3D Porous Cu 1 1 ~300 1
3D Cu 0.2 0.5 >120 2

3D hollow tubular 
carbon fiber

1 2 >60 3

3D porous Ni core-
shell

3 1 >315 4

Hollow carbon 
nanospheres

1 1 >75 5

3DNG 0.5 1 ~150 6
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Graphitized carbon 
fibers

1 1 >500 7

Nitrogen-doped 
graphene

1 1 >727 8

G-C3N4 1 1 >450 9
Unstacked 
graphene

drum

2 0.1 >800
10

1 1 >160Cu@VG foam
3 3 >50
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