Supplementary Information

Eco-friendly quantum dots for liquid luminescent

solar concentrators

Xin Liu^a, Bing Luo^{a,b}, Jiabin Liu^a, Dengwei Jing^b, Daniele Benetti^{a, 1}, Federico Rosei^{a,2}

^a Centre for Energy, Materials and Telecommunications, Institut National de la Recherche

Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.

^b International Research Center for Renewable Energy & State Key Laboratory of Multiphase

Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Corresponding author. Tel.: 1-514-2286995. E-mail address: daniele.benetti@emt.inrs.ca ² Corresponding author. Tel.: +1-514-2286906; fax: +1-450-9298102. E-mail address: rosei@emt.inrs.ca

FigS1. Absorption and PL emission spectra of ZISe QDs

Table S1. Detailed PL	properties	of ZISe Q	Ds under	different	nominal	Cu dop	ant ratios

Samples	Peak/nm	FWHM/nm	PL QY/%
ZISe	753	475	-
5%CZISe	677	123	22±5%
10%CZISe	702	118	25±5%
15%CZISe	718	115	27±5%
5%CZISe/ZSe	644	136	63±5%

Fig S2. Normalized absorption spectra and emission spectra of as-prepared QDs for overlap area, assumed absorption peak as the maximum intensity for normalization:(a) 290nm, (b) 300nm, (c) 320nm

 Table S2. Integrated overlap areas between normalized absorption spectra and PL emission

 spectra for as-prepared QDs

	290nm*	300nm	320nm
5%CZISe	1.34	1.50	1.91
10%CZISe	1.81	2.00	2.44
15%CZISe	2.17	2.40	2.94

* Assumed absorption peak as the maximum intensity for normalization.

Fig S3. TEM images of as-prepared QDs: (a)ZISe, (b) 15%CZISe

Samulas -	Ion	concentration/	Atom	Atomic ratio		
Samples	Cu	Zn	In	In/Zn	Cu/(Zn+In)	
ZISe	0	1.20	4.30	2.03	0	
5%CZISe	0.39	2.19	7.58	1.97	0.062	
10%CZISe	0.26	0.73	2.67	2.08	0.118	
15%CZISe	0.73	1.39	5.06	2.07	0.175	

Table S3. Elemental contents in Cu doped ZISe QDs determined by ICP-OES.

Fig S4. XPS spectra of element (a) Cu, (b) Zn, and (c) In of as-prepared ZISe and CZISe QDs

Fig S5 Schematic illustration of the possible energy states of Cu in Zn-In-Se nanocrystal

	Liquid LSC	Polymer LSC
Raw Materials		(based on PMMA)
QDs synthesis	3.1\$/m ²	3.1\$/m ²
Solvent	2.5%/m ²	0.3\$/m ²
Waveguide	12.0%/m ²	9.6\$/m ² (glass 6\$, polymer 3.6\$)
Total	17.7%/m ²	13\$/m ²

Table S4. The cost of Liquid LSC and polymer LSC for mass production*

* From Alibaba and Ref. 1

Fig S6. Absorption spectra of 5%CZISe QDs and 5%CZISe/ZSe QDs in solution and in polymer

Fig S7. Normalized PL spectra of 5% CZISe/ZSe based LSCs measured at different optical paths for the samples (a) Liquid LSC, (b) Polymer LSC

Table S5. PL dynamics parameters of as-prepared samples in solution and Polymer

Samples	A ₁	$\tau_{1/\rm ns}$	A ₂	$\tau_{2/ns}$	A ₃	$\tau_{3/ns}$	$ au_{ave/\mathbf{ns}}$
5%CZISe-Solution	0.15	37.6	0.82	163.0	0.03	9.0	157.7
5%CZISe-Polymer	0.16	38.8	0.82	165.3	0.02	6.1	159.5
5%CZISe/ZSe-Solution	0.10	43.5	0.89	174.4	0.01	7.4	170.6
5%CZISe/ZSe-Polymer	0.08	43.3	0.91	180.0	0.01	8.1	176.8

Table S6. Photovoltaic parameters of Si solar cell coupled with different LSCs (G=15)

Samples	J _{sc} /mA cm ⁻¹	V _{oc} /V	FF	PCE/%	η_{opt} /%
Only Si solar cell	23.56	0.54	0.51	6.60	-
Blank polymer	1.99	0.18	0.26	0.10	0.56
Blank quartz cell	2.81	0.24	0.27	0.18	0.80
Blank quartz cell with toluene	3.20	0.26	0.28	0.23	0.90
5%CZISe-Solution	9.30	0.45	0.38	1.63	2.63
5%CZISe-Polymer	2.50	0.21	0.27	0.15	0.70
5%CZISe/ZSe-Solution	9.80	0.46	0.39	1.75	2.77
5%CZISe/ZSe-Polymer	3.44	0.27	0.29	0.28	0.97

Bare LSCs (test No.)	1	2	3	4			Average
Optical efficiency (%)	2.24	2.06	2.23	2.22			2.19
LSCs with matching fluids (test No.)	1	2	3	4	5	6	Average
Optical efficiency (%)	2.18	1.93	2.78	2.09	2.30	2.98	2.38

Table S7. Optical efficiency of bare liquid LSC and LSCs with matching fluids

Reference

1. H. Li, K. Wu, J. Lim, H.-J. Song and V. I. Klimov, *Nat. Energy*, 2016, 1, 1-9.