Supporting Information

N-Doped CoSb@C Nanofibers as Self-Supporting Anode for

High-Performance K-Ion and Na-Ion Batteries

Jun Han^{a,b}, Kunjie Zhu^b, Pei Liu^b, Yuchang Si^{c*}, Yujun Chai^{a*}, Lifang Jiao^{b*}†

- a. College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050020, China
- b. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
- c. Logistics University of People's Armed Police Force, China

E-mail: jiaolf@nankai.edu.cn. (L.J.)

*Corresponding author

Figure S1. The SEM morphology of as-collected fibers with different mass of PAN.

a) 0.4g b) 0.6g c) 0.8g

Figure S2. The SEM morphology of fibers with different carbonized temperature.

a) 600°C b) 700°C c) 800°C

Figure S3. a) TG-DSC curves in the air environment with a heating rate of 5 °C min⁻¹ b) XPS spectrum of CoSb@C nanofibers.

As shown in Fig. S3a, the weight loss (≤ 200 °C) was due to the elimination of absorbed water. The weight decline (300 °C ~ 400 °C) was caused by the combustion of carbon. The weight change between 500 °C to 600 °C could be caused by the reaction of metallic volatilization and oxidation.

Fig. S4. EDS elements analysis of carbon and CoSb@C nanofibers.

Sample	N-C	arbon	N-CoSb@C			
Elements	С	Ν	С	Ν	Со	Sb
Content (at%)	75.35	24.65	56.12	13.37	15.79	14.72
Content (wt%)	72.37	27.62	18.77	5.21	25.96	50.06

Table S1. Element content of carbon and CoSb@C nanofibers derived from EDS.

Figure S5. Nyquist plots of CoSb@C nanofibers. a) SIBs and b) PIBs.

The doping of nitrogen elements can create defect sites to optimize the electronic configuration of carbon materials (the CoSb@C nanofibers and carbon nanofibers), improving the electronic conductivity. However, the charge-transfer resistance of the CoSb@C nanofibers is relatively diminutive, corroborating the faster Na+/K+ migration rate, which is mainly caused by the unique structure and CoSb alloy.

Figure S6. XRD patterns of CoSb@C nanofibers over 100 cycles in PIBs.

Figure S7. a) The different sweep-rate CVs behavior (0.01-3.0 V), b) Plots of i/v1/2 vs. v1/2 used for calculating constants k1 and k2 at different potentials of CoSb@C nanofibers in PIBs.

Plots of $i/v^{1/2}$ vs. $v^{1/2}$ at different potentials can be used for calculating constants k_1 (slope) and k_2 (intercept) of CoSb@C nanofibers in PIBs. When the potential is settled, the current (*i*) is composed of pseudocapacitance-predominant process (k_1v) and diffusion process ($k_2v^{1/2}$). From this procedure, the quantified evaluation can be applied to determine the extent of two kinetics process.

Figure S8. Galvanostatic charge/discharge curves (100 mA g⁻¹, 0.01 V-3.0 V) of PIBs.

As is well-known, the obvious plateaus are a typical feature of diffusion process, and the more moderate and continuous operation voltage with sloping platforms is the feature of the pseudocapacitive behavior in the galvanostatic charge/discharge curves. Then, the galvanostatic charge/discharge curves (Figure S8) with non-typic platforms (100 mA g-1, 0.01 V-3.0 V) indicate the co-existence of the pseudocapacitive behavior and diffusion process.

Figure S9. a) SEM, b) High-resolution SEM, c) TEM, d) HRTEM images of CoSb@C nanofibers over 100 cycles in SIBs.

Figure S10. XRD patterns of CoSb@C nanofibers over 100 cycles in SIBs.

Figure S11. a) The different sweep-rate CVs behavior (0.01-3.0 V), b) The value of *b*, c) Plots of $i/v^{1/2}$ vs. $v^{1/2}$ used for calculating constants k_1 and k_2 at different potentials and d) Capacitive contributions with different scan rates of CoSb@C

nanofibers in SIBs.

The reaction kinetics of CoSb@C nanofibers has been inspected by different sweep-rate cyclic voltammograms (CVs) in Figure S11a. The value of *b* in Figure S11b shows that reaction kinetics of CoSb@C nanofibers is controlled by pseudocapacitance process and diffusion process (alloying). Figure S11d displays the capacitive contributions of 45%, 53%, 60% at the scan rates of 0.4, 0.8, 1.4 mV s⁻¹, respectively, which indicates that the pseudocapacitance accelerate the rate property.

Figure S12. a) Galvanostatic charge/discharge curves (100 mA g⁻¹, 0.01 V-3.0 V), b) the CV behavior (0.01-3.0 V, 0.1 mV s⁻¹) of CoSb@C nanofibers, c) XRD patterns of 1st charge/discharge products, d) SEM images of CoSb@C nanofibers in first-cycle process in SIBs.

Figure S12a reveals the galvanostatic charge/discharge curves (100 mA g⁻¹, 0.01 V-3.0 V). In Figure S12b, the cyclic CV behavior (0.01-3 V, 0.1 mV s⁻¹) of CoSb@C nanofibers confirms its glorious cyclic performance once more. In the initial discharge

process, three peaks can be observed at 0.21 V, 0.43 V and 0.82 V, which are caused by the formation of Na_xSb ($x \le 3$) alloy and SEI layers. The following peaks from 0.7 V-1.0 V correspond with the formation of Na_xSb and then Na₃Sb alloy.

In the charge process, a broad peak around 0.75V is attributed to the desodiation of Na₃Sb alloy, and the peak at 2.73 V is caused by side reactions of electrolyte.^{1,2} The progress can be tested by XRD and SEM in Figure S12c-d.³ In the end, the reactions are as following:

 $CoSb + 3 Na^+ + 3 e^- \leftrightarrow Na_3Sb + Co$

Anode	Synthetic method	Electrochemical	Ref	
materials	Synthetic Include	performance		
3D NP-Sb	vacuum distillation method	318 mAh g ⁻¹ (50 cycles, 100 mA g ⁻¹ , PIBs)	[7]	
Sb@CSN	electrospray assisted method	551 mAh g ⁻¹ (100 cycles, 100 mA g ⁻¹ , PIBs)	[9]	
CoSb@C nanofiber	electrospinning	449 mAh g ⁻¹ (160 cycles, 100 mA g ⁻¹ , PIBs)	This Work	
Sb–C nanofiber	electrospinning	495 mAh g ⁻¹ (400 cycles, 200 mA g ⁻¹ , SIBs)	[15]	
Sb@(N, S-C)	annealing the mixture solution	621 mAh g ⁻¹ (150 cycles, 100 mA g ⁻¹ , SIBs)	[37]	
Sb–C	sol-gel method	305 mAh g ⁻¹ (60 cycles, 50 mA g ⁻¹ , SIBs)	[43]	
SnSb NCs	surfactant-free synthesis	560 mAh g ⁻¹ (100 cycles, 200 mA g ⁻¹ , SIBs)	[22]	
SnSb/NPCNWs	electrospinning	180 mAh g ⁻¹ (10000 cycles, 2000 mA g ⁻¹ , SIBs)	[36]	
Fe-Sb alloy	melt-spinning process	466 mAh g ⁻¹ (50 cycles, 80 mA g ⁻¹ , SIBs)	[27]	
Bi _{0.57} Sb _{0.43} -C	mechanical milling method	410 mAh g ⁻¹ (300 cycles, 200 mA g ⁻¹ , SIBs)	[28]	
CoSb@C	alaatraaninnina	708 mAh g ⁻¹ (200 cycles,	Thie Work	

Table S2. Electrochemical performance of Sb-based materials for PIBs and SIBs

Refences:

1. X. Zhou, Y. Zhong, M. Yang, M. Hu, J. Wei and Z. Zhou, Chem. Commun., 2014, 50, 12888-12891.

2. B. Selvaraj, S.-S. Huang, C.-E. Wu, Y.-H. Lin, C.-C. Wang, Y.-F. Song, M.-L. Lu, H.-S. Sheu and N.-L. Wu, *ACS Appl. Energy Mater.*, 2018, **1**, 2317-2325.

3. X. Zhang, P. Li, R. Zang, S. Wang, Y. Zhu, C. Li and G. Wang, *Chem Asian J*, 2017, **12**, 116-121