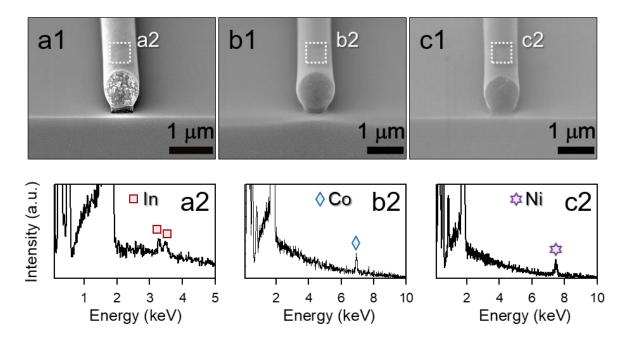
Supplementary Information


Metal oxide patterns of one-dimensional nanofibers: On-demand, directwrite fabrication, and application as a novel platform for gas detection

Kyeorei Lim,^a Young-Moo Jo,^a Ji-Wook Yoon,^{b,*} and Jong-Heun Lee^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea ^bDepartment of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Korea

E-mail: jwyoon@jbnu.ac.kr (Ji-Wook Yoon), jongheun@korea.ac.kr (Jong-Heun Lee)

SUPPLEMENTARY FIGURES

Figure S1 (a1-c1) Cross-sectional SEM images of (a1) In/PVP, (b1) Co/PVP, and (c1) Ni/PVP precursor fibers. (a2-c2) EDS analysis results for the (a2) In/PVP, (b2) Co/PVP, and (c2) Ni/PVP.

Figure S2

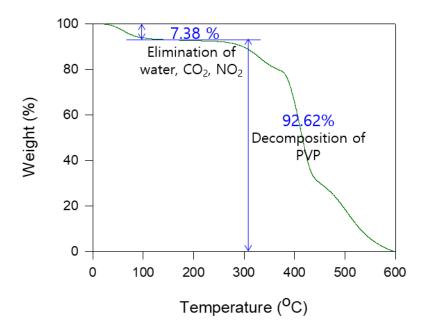
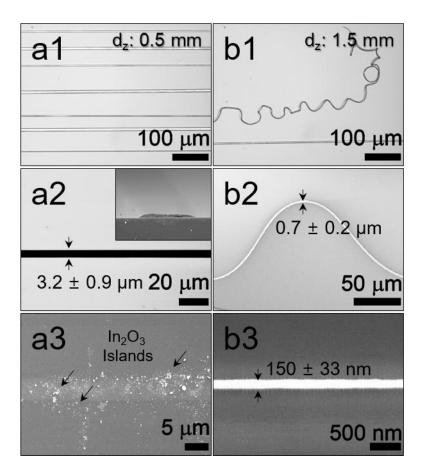
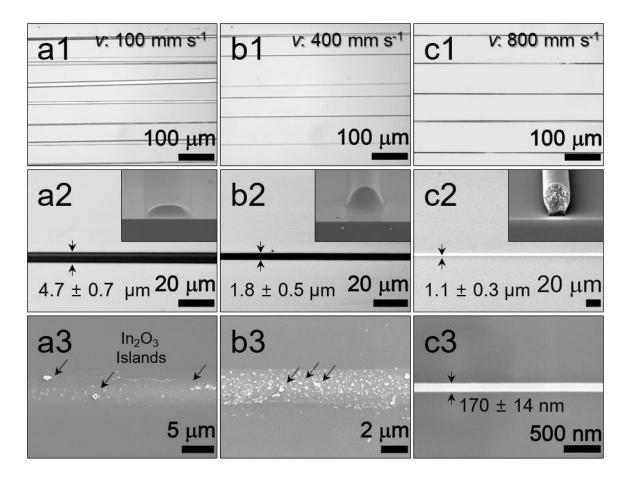




Figure S2 Thermal gravimetric analysis (TGA) of PVP (M_w=1,300,000).

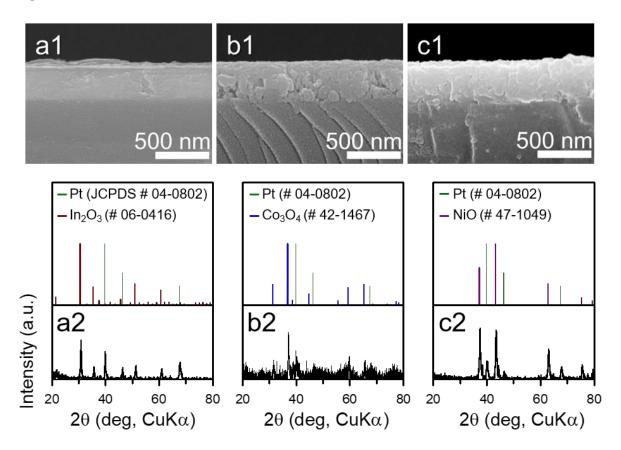


Figure S3 (a1,b1) Optical and (a2,b2) SEM images of In/PVP arrays fabricated at the d_z of (a1,a2) 0.5 and (b1,b2) 1.5 mm. (a3,b3) SEM images of In₂O₃ after heat treatment of the corresponding In/PVP at 600 °C for 5 h (number of measurement for determining the width of nanofiber: 10).

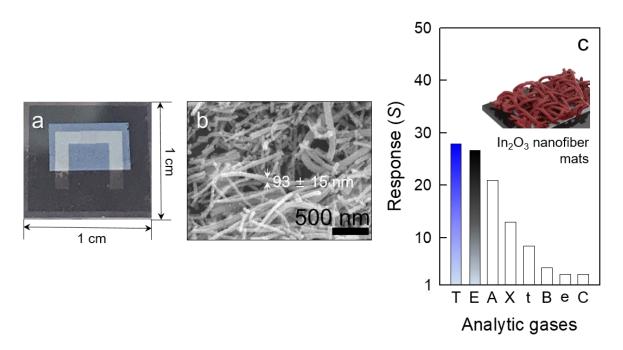

Figure S4

Figure S4 (a1-c1) Optical and (a2-c2) SEM images of In/PVP arrays at the *v* of (a1,a2) 100, (b1,b2) 400, and (c1,c2) 800 mm s⁻¹. (a3-c3) SEM images of In_2O_3 after heat treatment of the corresponding In/PVP at 600 °C for 5 h (number of measurement for determining the width of nanofiber: 10).

Figure S5 (a1-c1) SEM images of (a1) In_2O_3 -F, (b1) Co_3O_4 -F, and (c1) NiO-F sensors. (a2-c2) XRD patterns of the corresponding thin film sensors.

Figure S6 (a) Optical and (b) SEM images of In_2O_3 nanofiber mats sensor fabricated by c-ES (number of measurement for determining the width of nanofiber: 10). (c) Gas responses of In_2O_3 nanofiber mats sensor to 5 ppm of TMA (T), ethanol (E), ammonia (A), *p*-xylene (X), toluene (t), benzene (B), ethylene (e) and CO (C) at 350 °C.

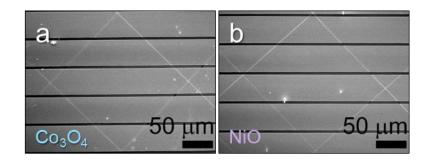
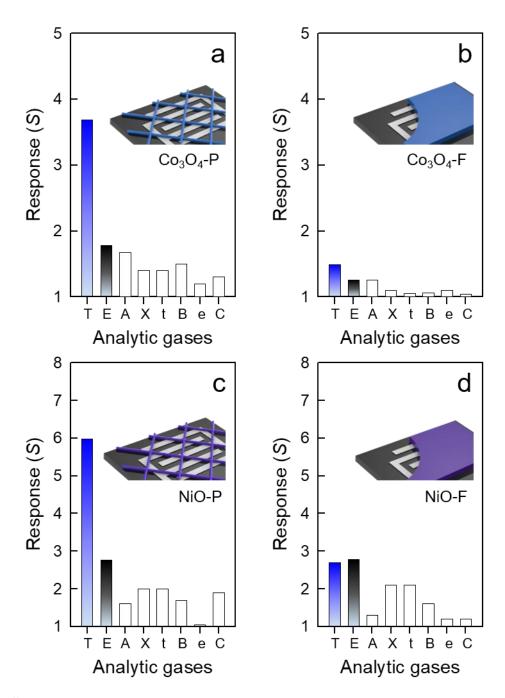



Figure S7 (a,b) SEM images of (a) Co₃O₄-P, and (b) NiO-P sensors.

Figure S8 (a,b) Gas responses of (a) Co_3O_4 -P and (b) Co_3O_4 -F sensors to 5 ppm of TMA (T), ethanol (E), ammonia (A), *p*-xylene (X), toluene (t), benzene (B), ethylene (e) and CO (C) at 225 °C. (c,d) Gas responses of (c) NiO-P, and (d) NiO-F sensors to the gases at 300 °C.

a1	b1	c1	d1	
100 µm	100 μm	100 μm	100 μm	
a2	b2	c2	d2	
1 μμ	1 μ m	• 1 μm	1 μm	

Figure S9 (a1-d1) Optical images of In/PVP arrays on various substrates; SiO₂/Si wafer with (a) Au interdigitated electrodes, (b) alumina, (c) glass, and (d) indium tin oxide (ITO) substrates. (a2-d2) SEM images of In₂O₃ nanofibers after heat treatment of the In/PVP on the substrates at 600 °C for 5 h.

Solvent (g)	Polymer	Metal salts	Structure		
	(wt%)	(wt%)	Precursor	After heat treatmen	
Methanol (7)	PVP (17.4)	Indium nitrate (1.4)	Non-wetted fiber	Nanofiber	
Methanol (7)	PVP (17.4)	Cobalt nitrate (1.7)	Non-wetted fiber	Nanofiber	
Methanol (7)	PVP (17.4)	Nickel nitrate (1.7)	Non-wetted fiber	Nanofiber	
Ethanol (7)	PVP (17.4)	Indium nitrate (1.4)	Wetted fiber	Islands	
Water (7)	PVP (17.4)	Indium nitrate (1.4)	Wetted fiber	Islands	
Methanol (7)	PVP (4.7)	Indium nitrate (1.4)	Wetted fiber	Islands	
Methanol (7)	PVP (8.9)	Indium nitrate (1.4)	Wetted fiber	Islands	
Methanol (7)	PVP (12.8)	Indium nitrate (1.4)	Wetted fiber	Islands	
Methanol (7)	PVP (19.7)	Indium nitrate (1.4)	Not available	Not available	
Methanol (7)	PVP (17.4)	Indium nitrate (0)	Non-wetted fiber	Not available	
Methanol (7)	PVP (17.4)	Indium nitrate (0.47)	Non-wetted fiber	Islands	
Methanol (7)	PVP (17.4)	Indium nitrate (0.93)	Non-wetted fiber	Islands	
Methanol (7)	PVP (17.4)	Indium nitrate (1.8)	Entangled fiber	Entangled nanofiber	

Table S1 The compositions of solutions used in this study, and the resultant structures of precursor and metal oxides.

Solvent	Metal salts	Viscosity (mPa s)	Ref.
Ethanol	Titanium(IV) isopropoxide	335	22
Ethanol	Titanium tetraisopropoxide	59	23
Ethanol	1-Tetra-n-butyl titanate	330	24
Ethanol + H_2O	Iron(III) nitrate nonahydrate, Cobalt (II) acetate tetrahydrate	117	25
$Ethanol + H_2O$	Indium(III) Nitrate	480	26
$E than ol + H_2 O$	Cerium nitrate	400	27

Table S2 The compositions of solutions for c-ES using PVP (M_w =1,300,000) and metal salts reported in the literature.²²⁻²⁷

Structure	Synthesis method	TMA conc. (ppm)	S_{T}	$S_{\rm T} S_{\rm E}^{-1}$	Ref.
Nanofibers pattern	NFES	5	245	7.5	This study
Thin film	E-beam deposition	5	24	1	This study
Nanofibers mats	c-ES	5	28	1	This study
Nanofibers mats	c-ES	5	15	1	34
Nanoparticles	Precipitation	5	3	0.17	35
Microrods	Hydrothermal method	50	21	1.75	36
Nanospheres	Hydrothermal method	50	5	1	37
Hollow microtubes	Solution process	50	120	1.2	38

Table S3 TMA response (S_T) and selectivity ($S_T S_E^{-1}$) of the sensors using In₂O₃ nanostructures reported in the present study and the literature.³⁴⁻³⁸