ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Single atom supported MXene: How single-atomic-site catalysts tune high activity and selectivity of electrochemical nitrogen

fixation

Bin Huang,^{a,b,#} Neng Li,^{*b,c,#} Wee-Jun Ong, ^{*d,e} and Naigen Zhou^{*a}

^a School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.

^b State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, 430070, China.

^c State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM); School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China.

^d School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.

^e College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.# Bin Huang and Neng Li contribute equally to this work.

* Corresponding authors: <u>lineng@whut.edu.cn</u> (N. Li); <u>ongweejun@gmail.com</u> (W.-J. Ong); <u>ngzhou@ncu.edu.cn</u> (N. Zhou)

This Supplementary Information contains: Supplementary Figures S1-S11 Supplementary Tables S1-S8

Figure S1. The calculated Density of States of (a) Ti₂CO₂ and (b) Mo₂CO₂ at HSE06 level. S3 Figure S2. Side views of the adsorption of N₂ through the side-on and end-on patterns on (a) Sc, (b) Ti, (c) V, (d) Cr, (e) Mn, (f) Fe, (g) Co, (h) Ni, (i) Mo, (j) Ru, and (k) Rh @Ti₂CO₂. S4 Figure S3. Side views of the adsorption of N₂ through the side-on and end-on patterns on (a) Sc, (b) Ti, (c) V, (d) Cr, (e) Mn, (f) Fe, (g) Co, (h) Ni, (i) Mo, (j) Ru, and (k) Rh @Mo₂CO₂. S5 Figure S4. The optimized structures of H adsorption on metal@Ti₂CO₂. **S6** Figure S5. The optimized structures of H adsorption on metal@Mo₂CO₂. **S7 S**7 Figure S6. N₂ adsorption on (a) Mo₂CO₂ and (b) Ti₂CO₂ surface Figure S7. PDOS of N₂ adsorption on (a) Mo, (b) Ru @ Ti₂CO₂ and (c) Ru, (d) Ti @Mo₂CO₂. S8 Figure S8. Possible intermediates configurations for (a) Mo, (b) Ru @ Ti₂CO₂ and (c) Ru, (d) Ti @Mo₂CO₂. **S**8 S9 Figure S9. All intermediates coadsorbed on Mo@Mo₂CO₂. Figure S10. Charge variation of the three moieties along the distal pathway on TM@MXene. S10 Figure S11. (a) Mo@Ti₂CO₂, Ru@Ti₂CO₂, Ru@Mo₂CO₂, and Ti@Mo₂CO₂ and (b) Mo@Mo₂CO₂ configurations of MD simulations. S11 Table S1. The calculated zero point energies (ZPE) and entropy of different gas molecules from NIST database. S12 Table S2. The calculated binding energy (E_b) of various metal atoms anchored on MXene. S12 Table S3. The calculated thermodynamic quantities for H and N_2 adsorption on different kinds SAC.

Table S4. The calculated ZPE and TS of the adsorbed *NNH on different kinds SAC.S13Table S5. The calculated ZPE and TS of the different adsorbed intermediates on M (Ru and Mo)@MXene.@MXene.S14

S13

Table S6. The calculated free energies of the different adsorbed intermediates on M (Ru Mo, andTi) @MXene.S14

Table S7. The calculated ZPE and TS for all coadsorbed species and all the possible surfaceintermediates along the NRR via different reaction mechanisms with two speculator dinitrogenmolecules on Mo@Mo2CO2.S14

Table S8. The calculated Gibbs free energies at 298.15 K (in eV) with two speculator dinitrogen

Figure S1. The calculated Density of States (DOS) of (a) Ti_2CO_2 and (b) Mo_2CO_2 at HSE06 level. The Fermi energy level is set to zero.

Figure S2. Side views of the adsorption of N_2 through the side-on and end-on patterns on (a) Sc, (b) Ti, (c) V, (d) Cr, (e) Mn, (f) Fe, (g) Co, (h) Ni, (i) Mo, (j) Ru, and (k) Rh @Ti₂CO₂.

Figure S3. Side views of the adsorption of N_2 through the side-on and end-on patterns on (a) Sc, (b) Ti, (c) V, (d) Cr, (e) Mn, (f) Fe, (g) Co, (h) Ni, (i) Mo, (j) Ru, and (k) Rh @Mo₂CO₂.

Figure S4. The optimized structures of H adsorption on TM@Ti₂CO₂.

Figure S5. The optimized structures of H adsorption on TM@Mo₂CO₂.

Figure S6. N_2 adsorption on (a) Ti_2CO_2 and (b) Mo_2CO_2 surface.

Figure S7. PDOS of N_2 adsorption on (a) Mo, (b) Ru @ Ti₂CO₂ and (c) Ru, (d) Ti @Mo₂CO₂.

Figure S8. Possible intermediates configurations for (a) Mo, (b) $Ru @ Ti_2CO_2 and (c) Ru$, (d) Ti $@Mo_2CO_2$.

Figure S9. All intermediates coadsorbed on Mo@Mo₂CO₂.

Figure S10. (a) The charge variations of N_xH_y on Mo, Ru@Ti₂CO₂ and Ru, Ti@Mo₂CO₂. (b) The charge variation of the three moieties along the distal pathway on Mo@Mo₂CO₂. Moieties 1, 2, and 3 represent the adsorbed N_xH_y species, two dinitrogen with the MoO₃ unit and MXene nanosheet, respectively. Here, 1, 2, 3, 4, 5 and 6 represent intermediates along the reaction pathway, as depicted in Figure 6 and Figure 7b, respectively.

Figure S11. Configurations of (a)Mo@Ti₂CO₂, Ru@Ti₂CO₂, Ru@Mo₂CO₂, and Ti@Mo₂CO₂ after 2 ps of MD simulations, (b) two configurations of Mo@Mo₂CO₂ after MD simulations (left: Mo atom locating proximate bridge site, right: Mo atom locating hollow site). (c) The energy change of diffusion image from hollow site of Mo atom to other hollow site on Mo₂CO₂ surface.

	270.15 K and 1	101,525 I u, Ollit C V).		
Gas Molecule	$H^0 + D$	ZPE	-TS	G
N ₂	-16.635	0.16	-0.58	-17.055
H_2	-6.77	0.27	-0.4	-6.9
NH ₃	-19.54	0.93	-0.562	-19.172

Table S1. The calculated zero point energies (ZPE) and entropy of different gas molecules from NIST database (T= 298.15 K and f= 101,325 Pa, Unit eV).

Table S2. The calculated binding energy (E_b) of various metal atoms anchored on MXene (Unit eV).

Metal	Metal@Ti ₂ CO ₂	Metal@Mo ₂ CO ₂
Sc	6.78	7.85
Ti	6.51	7.07
V	5.04	5.59
Cr	4.08	4.77
Mn	3.06	4.29
Fe	3.54	4.13
Co	3.35	3.75
Ni	3.65	3.91
Cu	1.98	2.88
Мо	4.40	3.47
Ru	3.70	3.19
Rh	3.23	3.37
Pd	1.86	2.01
Ag	1.39	2.35
Ir	2.97	2.45
Pt	2.10	2.14

Table S3. The calculated thermodynamic quantities for H and N_2 adsorption on different kinds SAC (Unit eV, T=298.15 K).

Metal	Metal@Ti ₂ CO	ZPE	-TS	Metal@Mo ₂ CO ₂	ZPE	-TS
	2					
	*Н	0.195	-0.02	*Н	0.231	-0.01
Sc	*N _{2-end-on}	0.181	-0.211	*N _{2-end-on}	0.164	-0.116
	*N _{2-side-on}	0.151	-0.246	*N _{2-side-on}	0.16	-0.186
Ti	*Н	0.171	-0.02	*Н	0.154	-0.03
	*N _{2-end-on}	0.181	-0.204	*N _{2-end-on}	0.185	-0.217
	*N _{2-side-on}	0.177	-0.193	*N _{2-side-on}	0.173	-0.139
	*Н	0.157	-0.025	*Н	0.159	-0.03
V	*N _{2-end-on}	0.177	-0.261	*N _{2-end-on}	0.199	-0.184
	*N _{2-side-on}	0.19	-0.149	*N _{2-side-on}	0.191	-0.144
Cr	*H	0.162	-0.024	*H	0.109	-0.01

	*N _{2-end-on}	0.192	-0.186	*N _{2-end-on}	0.195	-0.207
	*N _{2-side-on}	0.161	-0.184	*N _{2-side-on}	0.16	-0.223
	*H	0.139	-0.044	*Н	0.181	-0.01
Mn	*N _{2-end-on}	0.191	-0.186	*N _{2-end-on}	0.185	-0.147
	*N _{2-side-on}	0.169	-0.248	*N _{2-side-on}	0.166	-0.169
	*H	0.156	-0.03	*Н	0.158	-0.03
Fe	*N _{2-end-on}	0.189	-0.193	*N _{2-end-on}	0.197	-0.207
	*N _{2-side-on}	0.173	-0.224	*N _{2-side-on}	0.183	-0.198
	*H	0.127	-0.025	*H	0.157	-0.03
Со	*N _{2-end-on}	0.201	0.176	*N _{2-end-on}	0.208	-0.178
	*N _{2-side-on}	-0.189	-0.135	*N _{2-side-on}	0.181	-0.122
	*H	0.175	-0.02	*H	0.169	-0.02
Ni	*N _{2-end-on}	0.208	-0.171	*N _{2-end-on}	0.211	-0.175
	*N _{2-side-on}	0.178	-0.217	*N _{2-side-on}	0.182	-0.208
	*H	0.175	-0.02	*Н	0.156	-0.03
Мо	*N _{2-end-on}	0.21	-0.149	*N _{2-end-on}	0.208	-0.161
	*N _{2-side-on}	0.185	-0.174	*N _{2-side-on}	0.187	-0.114
	*H	0.112	-0.01	*Н	0.163	-0.05
Ru	*N _{2-end-on}	0.181	-0.214	*N _{2-end-on}	0.225	-0.139
	*N _{2-side-on}	0.163	-0.166	*N _{2-side-on}	0.177	-0.125
	*H	0.222	-0.01	*H	0.146	-0.04
Rh	*N _{2-end-on}	0.196	-0.196	*N _{2-end-on}	0.211	-0.166
	*N _{2-side-on}	0.186	-0.179	*N _{2-side-on}	0.213	-0.164

Table S4. The calculated ZPE and TS of the adsorbed *NNH on different kinds SAC (T=298.15 K).

Matal	*NNH@	Ti ₂ CO ₂	*NNH @Mo ₂ CO ₂		
	ZPE (eV)	-TS (eV)	ZPE (eV)	-TS (eV)	
Sc	0.427	-0.251	0.431	-0.168	
Ti	0.444	-0.201	0.445	-0.216	
V	0.456	-0.19	0.451	-0.208	
Cr	0.439	-0.231	0.442	-0.218	
Mn	0.448	-0.15	0.434	-0.247	
Fe	0.469	-0.118	0.467	-0.194	
Co	0.477	-0.182	0.467	-0.129	
Ni	0.475	-0.114	0.476	-0.117	
Mo	0.488	-0.15	0.492	-0.158	
Ru	0.481	-0.108	0.478	-0.189	
Rh	0.478	-0.183	0.453	-0.103	

On	,,.								
Adsorbad	Mo@Ti ₂ CO ₂		Ru@]	Ru@Ti ₂ CO ₂		Ru@Mo ₂ CO ₂		Ti@Mo ₂ CO ₂	
Adsorbed	ZPE	-TS	ZPE	-TS	ZPE	-TS	ZPE	-TS	
species	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	
*NNH ₂	0.815	-0.176	0.828	-0.142	0.82	-0.136	0.794	-0.201	
* NT NITT									
* NNH_3 or	1.017	-0.256	1.025	-0.279	1.015	-0.294	0.067	-0.108	
*N									
*NH	0.346	-0.094	0.312	-0.02	0.339	-0.098	0.344	-0.109	
*NH ₂	0.679	-0.103	0.679	-0.056	0.679	-0.056	0.637	-0.177	
*NH ₃	1.0	-0.157	1.01	-0.203	1.028	-0.172	1.032	-0.13	
*NHNH	0.828	-0.172	0.839	-0.145	0.835	-0.179	-	-	
*NHNH ₂	1.144	-0.175	1.132	-0.162	1.146	-0.152	1.13	-0.158	
*NH ₂ NH ₂	-	-	-	-	-	-	1.451	-0.199	

Table S5. The calculated ZPE and TS of the different adsorbed intermediates on TM (Ru and Mo) @MXene (T=298.15 K).

Table S6. The calculated free energies of the different adsorbed intermediates on TM (Ru, Mo, and Ti) @MXene (T=298.15 K).

A dearbad spacing	a	Ti ₂ CO ₂	o ₂ CO ₂	
Ausorbeu species	Мо	Ru	Ru	Ti
*clean surface	-419.069	-416.284	-432.208	-435.978
*NNH	-439.201	-436.256	-453.144	-456.352
*NNH ₂	-442.926	-440.169	-456.856	-460.395
*NNH3	-446.855	-443.899	-460.561	-443.351
	-431.901	-428.023	-444.673	-449.305
*NH	-435.645	-432.230	-448.685	-453.519
*NH ₂	-438.579	-436.062	-452.487	-456.506
*NH ₃	-442.248	-439.60	-456.096	_
*NHNH	-446.237	-443.216	-460.105	-464.624
*NHNH ₂	_	_	_	-466.955
*NH ₂ NH ₂				

Table S7. The calculated ZPE and TS for all coadsorbed species and all the possible surface intermediates along the NRR via different reaction mechanisms with two speculator dinitrogen molecules on $Mo@Mo_2CO_2$.

Adsorbed species	*N2	*2N ₂	*3N ₂	*N2-H	*2N ₂ -H	*3N ₂ -H
ZPE (eV)	0.208	0.428	0.623	0.386	0.585	0.868
-TS (eV)	-0.161	-0.294	-0.491	-0.167	-0.35	-0.437
Adsorbed species	*N ₂ H	N_2H_2	*NNH ₃	*NH	*NH ₂	*NH ₃
ZPE (eV)	0.925	1.263	1.457	0.814	1.116	1.477
-TS (eV)	-0.441	-0.397	-0.581	-0.36	-0.384	-0.401
Adsorbed species	*NHNH ₂	*NH ₂ NH ₂	NH ₃ NH ₂	*NHNH		

S14

ZPE (eV)	1.60	1.94	2.1	1.477
-TS (eV)	-0.432	-0.49	-0.572	-0.401

Table S8. The calculated Gibbs free energies at 298.15 K (in eV) with two speculator dinitrogen molecules on $Mo@Mo_2CO_2$.

Adsorbed species	*N2	*2N ₂	*3N ₂	*N2-H	*2N ₂ -H	*3N ₂ -H
G	-452.508	-470.432	-488.337	-455.944	-473.985	-491.249
Adsorbed species	$N_{2}H$	N_2H_2	*NNH ₃	*NH	*NH ₂	*NH ₃
G	-491.469	-495.405	-498.818	-483.756	-487.296	-491.349
Adsorbed species	*NHNH ₂	*NH ₂ NH ₂	NH ₃ NH ₂	*NHNH		
G	-498.503	-501.857	-506.620	-493.629		