Electronic Supplementary Information

Blade-coated Highly Efficient Thick Active Layer of Non-fullerene Organic Solar Cells

Lin Zhang, ^{ab} Heng Zhao, ^a Baojun Lin, ^a Jian Yuan, ^a Xianbin Xu, ^a Jingnan Wu, ^c Ke Zhou, ^a Xia Guo, ^c Maojie Zhang ^c and Wei Ma*^a

^aState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China. E-mail: <u>msewma@xjtu.edu.cn</u>

^bHunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.

^cState and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Experiment section

Device fabrication:

Organic solar cells were fabricated with a conventional device configuration of ITO/PEDOT:PSS/PM6:IT-4F/ZrAcac/Al. The patterned ITO substrates were cleaned by sonication in detergent water, deionized water, acetone and isopropanol for 20 min of each step. After UVO treatment for 20 min, an hole-transporting layer of PEDOT:PSS (Heraeus Clevios P VP AI 4083) was deposited by spin-coating at 5000 rpm for 30 s, followed by thermal annealing at 150 °C for 15 min in air. The active layer solution was prepared in chlorobenzene (with 0.25% DIO by volume) at a total concentration of 20 mg mL⁻¹ with the D/A ratio of 1:1 by weight, accompanied by string on a hotplate at 50 °C over 8 h. After the solution cooling to room temperature, an active layer was deposited by blade-coating or spin-coating at ambient environment. The silicon wafer was used as the blade with UVO treatment for 20 min. The velocity was 20~50 mm s⁻¹, and the gap between blade and substrate was 100~600 μ m. The film thickness was controlled by changing the gap and velocity. Moreover, the substrate temperature was changed (30 °C, 50 °C, 70 °C) by a controllable heating element. The bladecoating was performed after the dropping of $\sim 10 \,\mu$ L solution at the beginning of the substrate area in air. And then, the residual solution on the back of substrate was erased by cotton swab with chloroform. For spin-coating, the solution was spin-coated on the PEDOT:PSS layer in the air with a various rotate speed to achieve different-thickness films. There are no any other processing treatments (such as thermal annealing or solvent annealing) for all the blade-coated active layer and spin-coated active layer. Then, a thin ZrAcac¹ layer (1.2 mg/mL in ethanol, 3000 rpm for 30 s, about 15 nm) was spin-coated on the active layer in the N₂-filled glovebox. Finally, a 100 nm Al was deposited as anode by vacuum evaporation under vacuum ($<1 \times 10^{-4}$ Pa). The device configuration of oragnic solar cells for the measurement of long term stability is ITO/ZnO/PM6:IT-4F/MoO₃/Al. ZnO precursor was prepared by dissolving zinc acetate in 2-Methoxyethanol with Ethanolamine. The ZnO layer was deposited by spin-coating a ZnO precursor solution at 4500 rpm for 1 min, followed by thermal annealing at 200 °C for 1h. The MoO₃ layer was 10 nm prepared by vacuum evaporation.

Characterizations:

The *J-V* characteristics were performed in N₂-filled glovebox under AM 1.5G (100 mW/cm²) by using a Keithley 2400 source meter unit and an AAA solar simulator (SS-F5-3A, Enli

Technology CO., Ltd.) calibrated by a standard Si photovoltaic cell with a KG5 filter. The *J-V* measurement was made at the sweep speed of 0.02 V s⁻¹ and scan direction of -0.5 V to 1.0 V under the room temperature (about 25 °C). For the device of 4 mm² effective area, the *J*-V characteristics was measured without aperture. For large-area device of 90 mm² device area, the *J-V* measurement was made with an aperture (or mask) of 56 mm². The EQE was measured by a solar cell spectral response measurement system (QE-R3018, Enli Technology CO., Ltd.) with the calibrated light intensity by a standard single-crystal Si photovoltaic cell. The film thickness was measured by a Surface profilometer (Dektak XT, Bruker). The UV–Vis absorption spectrum was measured by a FEI Talos F200c transmission electron microscope at 200 kV with the film thickness of about 60 nm.

Grazing incidence wide-angle x-ray scattering (GIWAXS) characterization: GIWAXS² measurements were performed at beamline 7.3.3 at the Advanced Light Source. Samples were prepared on Si substrates using identical blend solutions as those used in devices. The 10 keV X-ray beam was incident at a grazing angle of 0.11-0.15°, selected to maximize the scattering intensity from the samples. The scattered x-rays were detected using a Dectris Pilatus 2 M photon counting detector.

Resonant Soft X-ray Scattering (RSoXS): RSoXS^{3, 4} transmission measurements were performed at beamline 11.0.1.2 at the Advanced Light Source. Samples for RSoXS measurements were prepared on a PEDOT:PSS modified Si substrate under the same conditions as those used for device fabrication, and then transferred by floating in water to a 1.5 mm×1.5 mm, 100 nm thick Si₃N₄ membrane supported by a 5 mm×5 mm, 200 μ m thick Si frame (Norcada Inc.). 2D scattering patterns were collected on an in-vacuum CCD camera (Princeton Instrument PI-MTE). The sample detector distance was calibrated from diffraction peaks of a triblock copolymer poly(isoprene-b-styrene-b-2-vinyl pyridine), which has a known spacing of 391 Å. The beam size at the sample is approximately 100 μ m by 200 μ m.

Hole and electron mobility measurements: The mobilities were measured by using space charge limited current (SCLC) model^{5, 6} with the hole-only device of ITO/PEDOT:PSS/PM6:IT-4F/MoO₃/Al and electron-only device of ITO/ZnO/PM6:IT-4F/ZrAcac/Al. Hole mobility and electron mobility were obtained by fitting the current density-voltage curves and calculated by the equation:

$J=9\varepsilon_0\varepsilon_r\mu(V_{appl}-V_{bi}-V_s)^2/8L^3$

Where J is current density, ε_0 is the permittivity of free space, ε_r is the relative permittivity of the material (assumed to 3), μ is hole mobility or electron mobility, V_{appl} is applied voltage, V_{bi} is the buit-in voltage (0 V), V_s is the voltage drop from the substrate's series resistance (V_s =IR) and L is the thickness of film.

Fig. S1. 2D GIWAXS scattering patterns of PM6 and IT-4F films prepared by spin-coating and blade-coating.

Fig. S2. $J^{1/2}$ -V characteristics of (a) hole-only and (b) electron-only devices based on the PM6:IT-4F blends. The lines present linear fitting results.

Fig. S3. 2D RSoXS patterns at the X-ray energy of 284.8 eV for the PM6:IT-4F films of spincoating (a), blade-coating @30 °C (b), blade-coating @50 °C (c) and blade-coating @70 °C (d).

Fig. S4. The fitting results of in plane GIWAXS profiles (a) and out of plane GIWAXS profiles (b) for the PM6:IT-4F films

	PM6 (100) in plane		PM6 (100) out of plane		IT-4F (001) in plane		IT-4F (100) in plane	
	q (Å-1)	FWHM (Å-1)	q (Å-1)	FWHM (Å-1)	q (Å-1)	FWHM (Å-1)	q (Å-1)	FWHM (Å-1)
Spin-coating	0.30	0.053	0.29	0.060	-	-	-	-
Blade-coating @30 °C	0.30	0.047	0.29	0.057	-	-	-	-
Blade-coating @50 °C	0.29	0.034	0.29	0.054	0.31	0.029	-	-
Blade-coating @70 °C	0.29	0.042	0.29	0.052	-	-	0.39	0.021

Table S2. Summarized photovoltaic parameters of PM6:IT-4F devices at different active layer thicknesses under illumination of AM 1.5G, 100 mW cm⁻². (The effective device area is 4 mm². Average values are obtained from 15 devices)

	$V_{oc}\left(\mathrm{V}\right)$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)	Thickness (nm)
Spin-coating	0.87±0.01	16.02±0.41	70.78±0.52	9.86±0.38 (10.24)	79
	$0.88 {\pm} 0.01$	18.99±0.52	70.47±0.81	11.78±0.43 (12.21)	103
	0.88±0.01	17.92±0.44	67.96±0.75	10.72±0.36 (11.08)	149
	0.87 ± 0.01	17.68±0.39	64.64±0.70	9.94±0.30 (10.24)	186
	0.85 ± 0.01	17.24±0.46	61.37±0.66	9.27±0.38 (9.65)	233
	0.85±0.01	16.72±0.37	51.35±0.83	7.30±0.28 (7.58)	330
	0.83 ± 0.02	14.63±0.58	48.79±0.78	5.92±0.29 (6.21)	398
	0.83±0.02	12.68±0.55	44.25±0.69	4.52±0.44 (4.96)	480
	0.87±0.01	18.54±0.44	68.01±0.68	10.97±0.33 (11.30)	96
	0.87 ± 0.01	19.89±0.59	68.39±0.62	11.83±0.42 (12.25)	132
	0.87 ± 0.01	18.78±0.41	67.69±0.77	11.06±0.29 (11.35)	178
Blade-coating @30 °C	0.86±0.01	18.08±0.36	65.09±0.56	10.12±0.31 (10.43)	212
	0.85 ± 0.01	17.62±0.40	61.46±0.58	9.20±0.31 (9.51)	266
	$0.84{\pm}0.01$	16.36±0.52	58.94 ± 0.78	8.10±0.39 (8.49)	325
	0.83±0.02	15.65±0.62	50.54±0.70	6.56±0.37 (6.93)	415
	0.82 ± 0.02	14.43±0.58	44.44±0.72	5.17±0.39 (5.56)	490
	0.88±0.01	19.01±0.46	69.90±0.59	11.69±0.42 (12.11)	98
	0.88 ± 0.01	20.76±0.61	72.00±0.55	13.15±0.49 (13.64)	134
	0.88±0.01	19.87±0.43	70.29±0.71	12.29±0.32 (12.61)	172
Blade-coating	0.87 ± 0.01	19.73±0.32	69.26±0.65	11.89±0.29 (12.18)	216
@50 °C	0.86±0.01	20.05±0.52	62.29±0.68	10.78±0.33 (11.11)	275
	0.85 ± 0.01	19.60±0.50	58.71±0.51	9.73±0.39 (10.12)	343
	0.85±0.01	18.75±0.45	55.69±0.73	8.78±0.36 (9.14)	401
	0.84 ± 0.02	16.20±0.55	49.42±0.77	6.78±0.41 (7.19)	515
Blade-coating @70 °C	0.86±0.02	20.26±0.51	68.22±0.60	11.88±0.45 (12.33)	102
	0.87 ± 0.01	20.84±0.63	70.18±0.71	12.74±0.52 (13.24)	141
	0.86 ± 0.01	20.75±0.53	68.00±0.57	12.13±0.38 (12.51)	190
	0.86±0.01	19.60±0.40	68.31±0.62	11.65±0.28 (11.93)	241
	0.86 ± 0.01	19.69±0.47	66.76±0.68	11.30±0.34 (11.64)	270
	0.85±0.01	19.08±0.39	65.99±0.85	10.83±0.33 (11.16)	315
	0.83±0.02	19.40±0.56	58.98±0.77	9.86±0.36 (10.22)	409
	0.82 ± 0.02	18.56±0.65	55.34±0.71	8.85±0.30 (9.15)	502

Fig. S5. (a) FF, (b) J_{sc} and (c) V_{oc} values versus the active layer thickness of PM6:IT-4F devices.

Fig. S6. (a) GIWAXS profiles and (b) RSoXS profiles of blade-coated thin film and thick film.

Table S3. Photovoltaic parameters of blade-coated @70 °C large-area devices with various thickness of active layer under illumination of AM 1.5G, 100 mW cm⁻². (The device area is 90 mm² and the aperture area is 56 mm². Average values are obtained from 15 devices)

Thickness (nm)	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%) (PCE _{max})
135	0.83±0.01	19.28±0.61	67.56±0.85	10.77±0.62 (11.39)
160	0.83 ± 0.01	19.33±0.63	66.73±0.82	10.56±0.55 (11.11)
171	0.83 ± 0.01	19.44±0.56	66.61±0.77	10.41±0.66 (11.07)
188	0.83 ± 0.01	19.35±0.53	65.99±0.90	10.32±0.61 (10.93)
252	0.83±0.01	18.80±0.32	63.45±0.75	9.70±0.58 (10.28)
306	0.83±0.01	19.69±0.51	57.59±0.71	9.24±0.52 (9.76)

Fig. S7. PCE values versus the thickness of active layer for the blade-coated @70 °C large-area devices. The device area is 90 mm² and the aperture area is 56 mm².

References

- Z. A. Tan, S. S. Li, F. Z. Wang, D. P. Qian, J. Lin, J. H. Hou and Y. F. Li, *Sci. Rep.*, 2014, 4, 4691.
- 2. A. Hexemer, W. Bras, J. Glossinger, E. Schaible, E. Gann, R. Kirian, A. MacDowell, M. Church, B. Rude and H. Padmore, *J. Phy. Conf. Ser.*, 2010, **247**, 012007.
- 3. E. Gann, A. T. Young, B. A. Collins, H. Yan, J. Nasiatka, H. A. Padmore, H. Ade, A. Hexemer and C. Wang, *Rev. Sci. Instrum.*, 2012, **83**, 045110.
- 4. Y. Wu, Z. Y. Wang, X. Y. Meng and W. Ma, Prog. Chem., 2017, 29, 93-101.
- 5. J. A. Bartelt, D. Lam, T. M. Burke, S. M. Sweetnam and M. D. McGehee, *Adv. Energy Mater.*, 2015, **5**, 1500577.
- S. S. Chen, Y. H. Liu, L. Zhang, P. C. Y. Chow, Z. Wang, G. Y. Zhang, W. Ma and H. Yan, J. Amer. Chem. Soc., 2017, 139, 6298-6301.