Electronic Supplementary File

$Na_{2.3}Cu_{1.1}Mn_2O_{7-\delta}$ nanoflakes as enhanced cathode materials for highenergy sodium-ion batteries achieved by a rapid pyrosynthesis approach[†]

Vaiyapuri Soundharrajan^a, Balaji Sambandam^a, Muhammad H. Alfaruqi^{ab}, Sungjin Kim^a,

Jeonggeun Jo^a, Seokhun Kim^a, Vinod Mathew^a, Yang-kook Sun^c, Jaekook Kim^{a*}

^aDepartment of Materials Science and Engineering, Chonnam National University,

300Yongbong-dong, Bukgu, Gwangju 500-757, South Korea; Fax: +82-62-530-1699; Tel: +82-62-530-1703

^bDepartment of Teknik Metalurgi, Universitas Tekonolgi Sumbawa, Jl. Raya Olat Maras, Sumbawa, Nusa Tenggara Barat 84371, Indonesia.

^cDepartment of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea.

*E-mail: jaekook@chonnam.ac.kr

Fig. S1. (a) PXRD pattern of the combustion deposits (b) SEM image of the combustion deposits.

Fig. S2. (a) TG plot for $Na_{2.3}Cu_{1.1}Mn_2O_{7-\delta}$ nanodiscs under air atmosphere at 5°C/min, (b) PXRD pattern for $Na_{2.3}Cu_{1.1}Mn_2O_{7-\delta}$ obtained at different temperatures.

Element	Wy	ckoff Posit	SOF	D			
	х	У	Z	305	Diso		
Na	0.35533	0.39403	0.90521	0.6	1.2563		
Na	0.39069	0.91516	0.85114	1	0.84523		
Na	0.61369	0.08403	0.3647	1	1.89563		
Na	0.02416	0.55666	0.39748	1	0.986		
Na	0.25408	0.71021	0.05205	1	1.69253		
Cu	0.10795	0.0213	-0.00018	0.73	0.98654		
Cu	0.25587	0.27704	0.41366	0.73	1.15633		
Cu	0.1252	0.13265	0.67467	0.73	1.98542		
Mn	0.44928	0.39066	0.14224	1	1.2653		
Mn	0.88833	0.85148	0.27072	1	0.99786		
Mn	0.74833	0.73209	0.57559	1	0.36548		
Mn	0.58697	0.56874	0.85726	1	0.2564		
0	0.81613	0.7482	0.8184	1	1.0256		
0	0.40108	0.57027	0.57437	1	0.56846		
0	0.8507	0.01723	0.76468	1	1.6987		
0	0.4905	0.28773	0.69957	1	0.5489		
0	0.72062	0.82265	0.03224	1	1.28315		
0	0.66253	0.42435	0.38591	1	0.587		
0	0.25082	0.43003	0.8788	1	0.4586		
0	0.00302	0.86916	0.52292	1	1.02548		
0	0.74766	0.53118	0.10741	1	1.16548		
0	0.6623	0.75732	0.28137	1	0.65422		
0	0.35637	0.13462	-0.03734	1	1.53248		
R _{wp} = 4.009, R _p = 2.73, R _{exp} = 3.42, GoF = 1.36							
a = 6.46728 Å, b = 7.22589 Å, c = 7.63356 Å							
$\alpha = 103.2434^{\circ}, \beta = 110.0294^{\circ}, \gamma = 111.3249^{\circ}$							

Table S1 Crystallographic data of the NCuMnO-650 powder obtained from Rietveld refinement.

Fig. S3. Elemental mapping analysis of NCuMnO powder; bright filed image with corresponding elements, (a) Na, (b) Cu, (C) Mn and (O).

Element	Wavelength (nm)	Concentration (wt %)
Na	589.592	12.0
Cu	327.393	20.4
Mn	257.61	31.9

Table	S2.	ICP-OES	analysis	of I	NCuMnO	powder
i u o i c	-	ICI OLD	unurysis	011	veu viiio	powaci

Fig. S4. Charge/discharge pattern for $Na_{2.3}Cu_{1.1}Mn_2O_{7-\delta}$ obtained at different C rate.

Fig. S5. (a) charge/discharge pattern for oxygen-redox region of $Na_{2.3}Cu_{1.1}Mn_2O_{7-\delta}$ obtained between 4.7 and 2.1 V, (b) corresponding cycle stability of the oxygen-redox region of NCuMnO between 4.7 and 2.1 V.

Fig. S6. Discharge pattern for NCuMnO-650 sample obtained at 10C rate.

Fig. S7. *Ex situ* XANES spectra obtained for the Na_{2.3}Cu_{1.1}Mn₂O_{7- δ} cathode under different states of charge/discharge conditions (a) Cu-K edge, and (b) Mn-K edge.

Fig. S8 (a) Voltage profile of NCuMnO-650 cathode during GITT at 20 mAg⁻¹ for the 21st cycle, sodium ion chemical diffusion coefficient calculated from GITT curves during electrochemical reaction (b) charge and (c) discharge.