Controlled Building Mesoporous MoS₂@MoO₂-Doped Magnetic Carbon Sheets for Superior Potassium Ion Storage

Yuting Liu ^{a,b,1}, Yaoyao Xiao ^{a,b,1}, Fusheng Liu ^{a,b}, Pinyu Han^{a,b}, Guohui Qin^{a,b*}

^a State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China

^b Shandong Collaborative Innovation Center of Eco-Chemical Engineering, Qingdao 266042, Shandong, China

¹ These authors contribute equally to this work.

Corresponding author.

E-mail address: guohuiq163@sina.com

Directory of contents

Fig. S1 XPS spectrum of N for MoS₂@MoO₂@Fe@CN.

- Fig. S2 FESEM images of $MoS_2@MoO_2@Fe@CN$ at various time intervals: (A) 1 h, (B) 2 h, (C) 5 h and (D) 18 h.
- Fig. S3 The TEM image of products changing the original agent to (a) pure water. (b) In the absence of Fe. (c) In the absence of CN.
- Fig. S4 The XRD curves of (a) taking samples at 2 h, (b) 5 h. (c) The XPS spectrum of the products in the absence of CN. (d) The XRD curve of the products at 120°C.
- Fig. S5 (a) N₂ adsorption and desorption isotherm and (b) pore size distribution of MoS₂ based composites.
- Fig. S6 XRD patterns of the pristine MoS₂ based electrode and MoS₂ based composite electrode with different discharge/charge depths (the peak signals of MoO₂ were omitted).
- Fig. S7 Cross-sectional SEM images of MoS₂@MoO₂@Fe@CN (a) before and (b) after 100 cycles, cross-sectional SEM images of MoS₂@Fe@CN sample (c) before and (d) after 100 cycles at 100 mA g⁻¹.(e) The SEM images of (e) MoS₂@MoO₂@Fe@CN (f) MoS₂@Fe@CN after 500 cycles at 500 mA g⁻¹.
- Fig. S8 (a) Nyquist plot after ten cycles of plating stripping and long-term cycling and voltage hysteresis of symmetrical cells at 1 mA cm⁻², respectively. (b) The Nyquist plots of MoS_2 based composite after 500 cycles at 500 mA g⁻¹.
- Fig. S9 (a) CV curves of MoS₂@Fe@CN at various scan. (b) b-value determination for MoS₂@Fe@CN at various scan.
- Fig. S10 CV profiles of capacitive contribution at scan rates from 0.1 to 2 mV/s (a-e). (f) Specific capacities generated from battery contribution and capacitive contribution at different scan rates for MoS₂@MoO₂@Fe@CN.

Table S1 The comparison of the potassium storage properties between MoS₂@MoO₂@Fe@CN and the previously reported anode materials.

Fig. S1 XPS spectrum of N for MoS₂@MoO₂@Fe@CN.

Fig. S2 FESEM images of $MoS_2@MoO_2@Fe@CN$ at various time intervals: (A) 1 h, (B) 2 h, (C) 5 h and (D) 18 h.

Fig. S3 The TEM image of products changing the original agent to (a) pure water. (b) In the absent of Fe. (c) In the absence of CN.

Fig. S4 The XRD curves of (a) taking samples at 2 h. (b) 5 h. (c) The XPS spectrum of the products in the absence of CN. (d) The XRD curve of the products at 120°C.

Fig. S5 (a) N₂ adsorption and desorption isotherm and (b) pore size distribution of MoS₂ based composites.

Fig. S6 XRD patterns of the pristine MoS₂ based electrode and MoS₂ based composite electrode with different discharge/charge depths (the peak signals of MoO₂ were omitted).

Fig. S7 Cross-sectional SEM images of MoS₂@MoO₂@Fe@CN (a) before and (b) after 100 cycles, cross-sectional SEM images of MoS₂@Fe@CN sample (c) before and (d) after 100 cycles at 100 mAg⁻¹. (e) The SEM images of (e) MoS₂@MoO₂@Fe@CN (f) MoS₂@Fe@CN after 500 cycles at 500 mAg⁻¹.

Fig. S8 (a) Nyquist plot after ten cycles of plating stripping and long-term cycling and voltage hysteresis of symmetrical cells at 1 mA cm⁻², respectively. (b) The Nyquist plots of MoS₂ based composite after 500 cycles at 500 mA g⁻¹.

Fig. S9 (a) CV curves of MoS₂@Fe@CN at various scan. (b) b-value determination for MoS₂@Fe@CN at various scan.

Fig. S10 CV profiles of capacitive contribution at scan rates from 0.1 to 2 mV/s (a-e). (f) Specific capacities generated from battery contribution and capacitive contribution at different scan rates for MoS₂@MoO₂@Fe@CN.

Table S	L The	comparison	of	the	potassium	storage	properties	between	MoS ₂ @MoO ₂ @Fe@CN	and	the		
previously reported anode materials.													

Materials	Current density (mA g ^{.1})	Cycle number	Capacity (mAh g ^{.1})	Reference		
D MoS	50	1	104	40		
D-M052	100	100	94			
Mac NEa	50	1	77	40		
MOS ₂ NFS	100	100	67			
Sn ₄ P ₃ @C	50	50	307.2	41		
Ordered mesoporous carbon	50	100	257.4	42		
K4PTC@CNT	50	500	132	43		
MoS ₂ @SnO ₂ @C	100	25	250	44		
	50	1	351	This work		
MoS ₂ @MoO ₂ @Fe@CN	100	100	312			
	500	500	271			