Supporting Information for

" Pillar Iodination in Functional Boron Cage Hybrid Supramolecular Frameworks for High Performance Separation of Light Hydrocarbons "

Dr. Yuanbin Zhang, [ab] Lifeng Yang, [ab] Dr. Lingyao Wang, [c]

Dr. Xili Cui,[ab] Dr. Huabin Xing*[ab]

[a] Dr. Y. Zhang, L. Yang, Dr. X. Cui, Dr. H. Xing*

Key laboratory of Biomass Chemical Engineering of Ministry of Education,

College of Chemical and Biological Engineering

Zhejiang University, Hangzhou 310027, China

E-mail: xinghb@zju.edu.cn

[b] Dr. Y. Zhang, L. Yang, Dr. X. Cui, Dr. H. Xing*

Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China.

[c] Dr. L. Wang

Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

I	General Information and Procedures	p. S2–S5
II	X-ray Crystallography Data	p. S6–S15
III	Sorption Isotherms / breakthrough Data	p. S16–S30
IV	PXRD, TGA, IR and EPR Data	p. S31–33
v	DFT Calculation	p. S34
VI	References	p. S35

I General Information and Procedures

Unless otherwise noted, all the reactions were performed under air without N_2 or Ar protection. All reagents were used as received without purification unless stated otherwise.

Chemicals: The basic starting material $[Na]_2[B_{12}H_{11}I]$ was readily prepared by reported methods.^[1] 1,2-bis(4-pyridyl)acetylene and 4,4'-azobispyridine were purchased from Chemsoon without further purification. Cu $[NO_3]_2$ ·3H₂O and All other reagents were purchased from Adamas-beta and used without further purification.

Preparation of BSF-2

A mixture of $[Na]_2[B_{12}H_{11}I]$ (314 mg, 1 mmol, 1 equiv) and $Cu[NO_3]_2$ ·3H₂O (242 mg, 1 mmol, 1 equiv) was dissolved in 10 mL of water in a 100 mL round bottom flask. Then a MeOH (15 mL) solution of 1, 2-bis(4-pyridyl)acetylene (360 mg, 2 mmol, 2 equiv) was slowly added to the above aqueous solution. A violet solid precipitated immidiately, and the suspension was stirred at 25 °C for 24 h. The solid was collected by filtration and re-soaked in MeOH for solvent exchange. (Replacement of H₂O in the pores by MeOH benefits the activation of BSF-2 under vacuum for adsorption experiments)

Characterization:

IR spectra were recorded on a Nicolet iS10 FT-IR spectrometer as KBr pellets.

Single-crystal X-ray diffraction studies were conducted at 173 K on a BrukerAXS D8 VENTURE diffractometer equipped with a PHOTON-100/CMOS detector (CuK α , λ = 1.5418 Å; Mo-K α λ =0.71073 Å). Indexing was performed using APEX2. Data integration and reduction were completed using SaintPlus 6.01. Absorption correction was performed by the multi-scan method implemented in SADABS. The space group was determined using XPREP implemented in APEX2.1 The structure was solved with SHELXS-97 (direct methods) and refined on F2 (nonlinear least-squares method) with SHELXL-97 contained in APEX2, WinGX v1.70.01, and OLEX2 v1.1.5 program packages. All non-hydrogen atoms were refined anisotropically. The contribution of disordered solvent molecules was treated as diffuse using the Squeeze routine implemented in Platon.

Powder X-ray diffraction (PXRD) data were collected on a SHIMADZU XRD-6000

diffractometer (Cu K $\alpha\lambda$ = 1.540598 Å) with an operating power of 40 KV, 30mA and a scan speed of 4.0°/min. The range of 20 was from 5° to 80°.

Thermal gravimetric analysis was performed on a TGA Q500 V20.13 Build 39 instrument. Experiments were carried out using a platinum pan under nitrogen atmosphere which conducted by a flow rate of 60 mL/min nitrogen gas. First, the sample was heated at 80 °C for 1 h to remove the water residue and equilibrated for 5 minutes, then cooled down to 50 °C. The data were collected at the temperature range of 50 °C to 800 °C with a ramp of 10 °C /min.

EPR spectra were collected on a computer controlled X-band (9.5GHz) EPR spectrometer (Bruker A300).

The gas adsorption measurements were performed on a Micromeritics ASAP 2460 instrument. Before gas adsorption measurements, the sample was evacuated at 80 °C for 1 day until the pressure dropped below 7 μ mHg. The sorption isotherms were collected at 273–313 K on activated samples.

The breakthrough experiments were carried out in a dynamic gas breakthrough equipment.^[2-3] All experiments were conducted using a stainless steel column (0.46 cm inner diameter × 5 cm length. The weight of BSF-2 packed in the column was 0.2808 g. The column packed with sample was first purged with a He flow (5 mL min⁻¹) for 12 h at room temperature. The mixed gas of $C_3H_8/C_2H_6/CH_4 = 5/10/85$ (v/v/v) was then introduced at 4 mL min⁻¹. Outlet gas from the column was monitored using gas chromatography (GC-490) with the thermal conductivity detector TCD. After the breakthrough experiment, the sample was regenerated with a He flow of 5 mL min⁻¹ under 40 °C for 8 h for repeated breakthrough experiments and other breakthrough experiments with gas mixture of $C_2H_2/CO_2/He$ (10/5/85,v/v/v), CO_2/CH_4 (15/85, v/v) and C_2H_2/CH_4 (50/50, v/v). The sample in the column after regeneration was usually sealed and stored in the glovebox filled with N₂ for further use.

The shape of isotherm curves indicates that the adsorption of hydrocarbons on BSF-2 is not a simple monolayer adsorption (Langmuir type) because their capacities do not reach saturation at high pressure. In addition, the surface of BSF-1 is energetically uniform. In these cases, the dual-site Langmuir-Freundlich isotherm model is a reasonable selection for the correction of adsorption data. As evidence, the Q_{st} value calculated based on the fitting of dual-site Langmuir-Freundlich model is consistent with the calculated sorbate-sorbent interaction energy.

Fitting of pure component isotherms: the adsorption isotherms in BSF-2 were fitted using a dual-site Langmuir-Freundlich model.

$$q = q_{A, sat} \frac{b_A p^{\nu_A}}{1 + b_A p^{\nu_A}} + q_{B, sat} \frac{b_B p^{\nu_B}}{1 + b_B p^{\nu_B}}$$
(1)

Here, *P* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mol kg⁻¹), $q_{A,sat}$ an $q_{B,sat}$ are the saturation capacities of site A and B (mol kg⁻¹), b_A and b_B are the affinity coefficients of site A and B (kPa⁻¹), and v_A and v_B represent the deviations from an ideal homogeneous surface.

The binding energy is reflected in the isosteric heat of adsorption, Qst, defined as:

$$Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q \tag{2}$$

The calculations are based on the use of the Clausius-Clapeyron equation.

The IAST adsorption selectivity for two gases is defined as:

. 21

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
(3)

 q_1 , and q_2 are the molar loadings in the adsorbed phase in equilibrium with the bulk gas phase with partial pressures p_1 , and p_2

Density-functional theory calculations: The static binding energy was calculated using the combination of first-principle density functional theory (DFT) and plane-wave ultrasoft pseudopotentil implemented in the Materials Studio, CASTEP code. Calculations were performed under the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) exchange correlation. A cutoff energy of 544 eV and a $2 \times 2 \times 3$ k-point mesh were found to be enough for the total energy to converge within 1×10^{-5} ev atom⁻¹. The initial structure of BSF-2 with adsorbed gas was obtained from the results of GCMC simulation. The static binding energy (at T=0 K) was then calculated: EB = E (BSF-2) + E (gas) - E (BSF-2 + gas).

II X-ray Crystallography Data

Empirical formula	C24 H27 B12 Cu I N4				
Formula weight	691.65				
Temperature	173(2) K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	C2/c				
Unit cell dimensions	$a = 28.398(2) \text{ Å} \qquad \alpha = 90^{\circ}$ $b = 17.7840(12) \text{ Å} \qquad \beta = 133.929(2)^{\circ}$ $c = 20.2046(15) \text{ Å} \qquad \gamma = 90^{\circ}$				
Volume	7348.9(10) Å ³				
Ζ	8				
Density (calculated)	1.250 g/cm ³				
Absorption coefficient	1.454 mm ⁻¹				
F(000)	2728				
Crystal size	0.220 x 0.190 x 0.160 mm ³				
Theta range for data collection	2.489 to 25.009°				
Index ranges	-31<=h<=33, -20<=k<=21, - 22<=l<=24				
Reflections collected	23859				
Independent reflections	6440 [R(int) = 0.0692]				
Completeness to theta = 25.009°	99.5 %				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	6440 / 12 / 388				
Goodness-of-fit on F ²	1.150				
Final R indices [I>2sigma(I)]	R1 = 0.1525, wR2 = 0.3725				
R indices (all data)	R1 = 0.1579, wR2 = 0.3750				
Extinction coefficient	n/a				
Largest diff. peak and hole	1.754 and -1.389 e. Å ⁻³				

Table S1. Crystal data and structure refinement for BSF-2

tensor					
	Х	у	Z	U(eq)	
Cu(1)	6992(1)	5005(1)	5725(1)	17(1)	
I(1)	1388(1)	6019(2)	910(2)	54(1)	
I(1')	1862(1)	6762(1)	66(1)	31(1)	
N(1)	2629(5)	861(6)	1258(8)	24(3)	
N(4)	11333(5)	9145(6)	10136(7)	23(2)	
N(3)	7736(5)	5723(6)	6578(8)	20(2)	
N(2)	6244(5)	4279(6)	4958(8)	21(2)	
C(23)	11329(7)	8675(7)	10611(9)	24(3)	
C(18)	8218(6)	5569(8)	7470(9)	25(3)	
C(5)	3128(7)	808(8)	1312(11)	30(3)	
C(4)	3623(7)	1344(9)	1773(11)	35(4)	
C(24)	10838(7)	9128(8)	9196(9)	28(3)	
C(14)	7772(7)	6375(8)	6288(10)	31(3)	
C(10)	6170(6)	3793(7)	4364(9)	22(3)	
C(9)	5625(7)	3338(9)	3791(10)	31(3)	
C(1)	2618(8)	1459(8)	1656(12)	36(4)	
C(13)	5237(7)	3841(9)	4408(10)	35(4)	
C(17)	8756(7)	6038(10)	8098(11)	38(4)	
C(22)	10846(7)	8128(8)	10232(11)	30(3)	
C(12)	5765(7)	4314(8)	4943(10)	28(3)	
C(6)	4124(7)	2464(9)	2732(11)	36(4)	
C(25)	10333(7)	8610(8)	8742(10)	33(4)	
C(8)	5139(7)	3363(7)	3782(11)	29(3)	
C(3)	3595(8)	1954(9)	2185(11)	35(4)	
C(19)	9340(8)	7192(9)	8357(13)	46(5)	
C(16)	8796(8)	6687(8)	7787(12)	37(4)	
C(21)	10319(7)	8109(8)	9276(11)	33(4)	
B(1)	3727(9)	5425(11)	2803(12)	34(4)	
C(2)	3060(8)	2022(9)	2064(12)	41(4)	
B(2)	3422(9)	5901(10)	1804(12)	32(4)	
C(15)	8297(8)	6876(9)	6846(12)	41(4)	
B(3)	2950(8)	5206(8)	878(12)	27(3)	
B(4)	3674(8)	4921(12)	2004(12)	36(4)	

Table S2 Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2 x \ 10^3)$ for BSF-2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

C(20)	9778(8)	7609(10)	8778(12)	43(4)
B(5)	2947(10)	4357(9)	1301(15)	35(4)
B(6)	3440(9)	4493(10)	2529(13)	33(4)
B(7)	2333(10)	5455(12)	1524(15)	45(5)
B(8)	3062(9)	6039(10)	2218(12)	38(5)
B(9)	2578(9)	4510(12)	1739(16)	43(5)
B(10)	2261(8)	4952(13)	707(14)	44(5)
C(7)	4585(9)	2901(10)	3192(12)	47(5)
B(11)	3061(8)	5157(11)	2652(12)	36(4)
B(12)	2589(10)	5902(12)	1029(14)	48(6)

 Table S3 Selected bond lengths [Å] and angles [°] for BSF-2

Cu(1)-N(3) 2.003(11) Cu(1)-N(2) 2.003(10) Cu(1)-N(4)#1 2.030(11) Cu(1)-N(1)#2 2.024(10)I(1)-B(7) 2.26(2)I(1')-B(12) 2.19(2) N(1)-C(1) 1.350(19) N(1)-C(5) 1.346(19) N(4)-C(23) 1.277(18) N(4)-C(24) 1.371(17) N(3)-C(14) 1.336(18) N(3)-C(18) 1.331(17) N(2)-C(12) 1.340(18) N(2)-C(10) 1.371(17) C(23)-C(22) 1.400(18) C(23)-H(23) 0.9500 C(18)-C(17) 1.40(2) C(18)-H(18) 0.9500 C(5)-C(4) = 1.390(19)C(5)-H(5) 0.9500 C(4)-C(3)1.40(2)C(4)-H(4) 0.9500 C(24)-C(25) 1.385(19) C(24)-H(24) 0.9500 C(14)-C(15) 1.40(2) 0.9500 C(14)-H(14) C(10)-C(9) 1.380(18) C(10)-H(10) 0.9500 C(9)-C(8)1.37(2)C(9)-H(9) 0.9500 C(1)-C(2)1.35(2)C(1)-H(1) 0.9500 C(13)-C(8) 1.38(2) C(13)-C(12) 1.370(19) C(13)-H(13) 0.9500

```
C(17)-C(16) 1.36(2)
               0.9500
C(17)-H(17)
C(22)-C(21) 1.40(2)
C(22)-H(22)
               0.9500
               0.9500
C(12)-H(12)
C(6)-C(7)
          1.22(2)
C(6)-C(3) = 1.41(2)
C(25)-C(21) 1.42(2)
C(25)-H(25)
               0.9500
C(8)-C(7)
          1.40(2)
C(3)-C(2)
          1.37(2)
C(19)-C(20) 1.16(2)
C(19)-C(16) 1.43(2)
C(16)-C(15) 1.41(2)
C(21)-C(20) 1.42(2)
B(1)-B(6)
          1.76(3)
B(1)-B(4)
           1.76(3)
B(1)-B(8)
           1.75(2)
B(1)-B(11) 1.76(2)
B(1)-B(2)
          1.76(2)
B(1)-H(1A) 1.1200
C(2)-H(2) 0.9500
B(2)-B(12) 1.70(3)
B(2)-B(8)
           1.73(3)
B(2)-B(3)
           1.83(2)
B(2)-B(4)
           1.82(3)
B(2)-H(2A) 1.1200
C(15)-H(15)
               0.9500
B(3)-B(5)
          1.74(2)
B(3)-B(10) 1.79(3)
B(3)-B(12) 1.76(2)
B(3)-B(4)
           1.78(2)
B(3)-H(3)
           1.1200
B(4)-B(6)
           1.77(3)
B(4)-B(5)
          1.79(3)
B(4)-H(4A) 1.1200
```

B(5)-B(10)	1.76(3)
B(5)-B(9)	1.80(3)
B(5)-B(6)	1.83(3)
B(5)-H(5A)	1.1200
B(6)-B(11)	1.73(2)
B(6)-B(9)	1.77(3)
B(6)-H(6)	1.1200
B(7)-B(9)	1.76(3)
B(7)-B(11)	1.79(3)
B(7)-B(10)	1.76(3)
B(7)-B(12)	1.78(4)
B(7)-B(8)	1.82(3)
B(7)-H(7)	1.2400
B(8)-B(12)	1.78(3)
B(8)-B(11)	1.80(3)
B(8)-H(8)	1.1200
B(9)-B(11)	1.76(3)
B(9)-B(10)	1.78(3)
B(9)-H(9A)	1.1200
B(10)-B(12)	1.82(3)
B(10)-H(10A	A) 1.1200
B(11)-H(11)	1.1200
B(12)-H(12A	A) 1.2390
N(3)-Cu(1)-1	N(2) 174.7(5)
N(3)-Cu(1)-I	N(4)#1 91.3

```
.3(4)
N(2)-Cu(1)-N(4)#1
                   88.5(4)
N(3)-Cu(1)-N(1)#2
                   90.4(4)
N(2)-Cu(1)-N(1)#2 89.9(4)
N(4)#1-Cu(1)-N(1)#2
                       177.5(5)
C(1)-N(1)-C(5) 117.8(12)
C(1)-N(1)-Cu(1)#3
                  122.3(10)
C(5)-N(1)-Cu(1)#3
                   119.5(9)
C(23)-N(4)-C(24)
                   119.5(12)
C(23)-N(4)-Cu(1)#4 122.1(9)
C(24)-N(4)-Cu(1)#4 118.0(9)
```

```
C(14)-N(3)-C(18)
                   116.9(12)
                   122.1(9)
C(14)-N(3)-Cu(1)
C(18)-N(3)-Cu(1)
                   120.9(9)
C(12)-N(2)-C(10)
                   118.1(11)
                   120.2(9)
C(12)-N(2)-Cu(1)
C(10)-N(2)-Cu(1)
                   121.3(9)
N(4)-C(23)-C(22)
                   124.0(13)
N(4)-C(23)-H(23)
                   118.0
C(22)-C(23)-H(23) 118.0
N(3)-C(18)-C(17)
                   123.8(14)
N(3)-C(18)-H(18)
                   118.1
C(17)-C(18)-H(18) 118.1
N(1)-C(5)-C(4) 121.6(14)
N(1)-C(5)-H(5) 119.2
C(4)-C(5)-H(5) 119.2
C(5)-C(4)-C(3) 118.7(15)
C(5)-C(4)-H(4) 120.6
C(3)-C(4)-H(4) 120.6
N(4)-C(24)-C(25)
                   121.8(14)
N(4)-C(24)-H(24)
                   119.1
C(25)-C(24)-H(24) 119.1
N(3)-C(14)-C(15)
                   124.2(14)
N(3)-C(14)-H(14)
                   117.9
C(15)-C(14)-H(14) 117.9
N(2)-C(10)-C(9) 120.4(13)
N(2)-C(10)-H(10)
                   119.8
C(9)-C(10)-H(10)
                   119.8
C(10)-C(9)-C(8) 121.7(14)
C(10)-C(9)-H(9) 119.2
C(8)-C(9)-H(9) 119.2
N(1)-C(1)-C(2) 123.5(15)
N(1)-C(1)-H(1) 118.2
C(2)-C(1)-H(1) 118.2
C(8)-C(13)-C(12)
                   121.0(15)
C(8)-C(13)-H(13)
                   119.5
C(12)-C(13)-H(13) 119.5
```

```
C(16)-C(17)-C(18)
                   118.6(15)
                   120.7
C(16)-C(17)-H(17)
C(18)-C(17)-H(17)
                  120.7
C(21)-C(22)-C(23)
                   118.4(14)
C(21)-C(22)-H(22)
                   120.8
C(23)-C(22)-H(22)
                   120.8
N(2)-C(12)-C(13)
                   121.9(14)
N(2)-C(12)-H(12)
                   119.1
C(13)-C(12)-H(12) 119.1
C(7)-C(6)-C(3) 178(2)
C(21)-C(25)-C(24) 118.4(13)
C(21)-C(25)-H(25) 120.8
C(24)-C(25)-H(25) 120.8
C(13)-C(8)-C(9) 116.5(13)
C(13)-C(8)-C(7) 122.3(15)
C(9)-C(8)-C(7) 121.1(15)
C(2)-C(3)-C(4) 118.4(14)
C(2)-C(3)-C(6) 122.1(15)
C(4)-C(3)-C(6) 119.5(15)
C(20)-C(19)-C(16) 176(2)
C(17)-C(16)-C(15)
                  119.8(14)
C(17)-C(16)-C(19)
                  123.5(16)
C(15)-C(16)-C(19)
                  116.6(15)
C(25)-C(21)-C(22)
                  117.8(12)
C(25)-C(21)-C(20)
                  116.1(14)
C(22)-C(21)-C(20) 126.0(15)
C(1)-C(2)-C(3) 119.4(15)
C(1)-C(2)-H(2) 120.3
C(3)-C(2)-H(2) 120.3
C(19)-C(20)-C(21)
                   178(2)
```

Empirical formula	C20 H27 B12 Cu I N8		
Formula weight	699.67		
Temperature	1.360		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	Pnna		
Unit cell dimensions	$a = 19.924(8) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 10.286(4) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 16.677(6) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	3418(2) Å ³		
Ζ	4		
Density (calculated)	1.360 g/cm ³		
Absorption coefficient	1.567 mm ⁻¹		
Goodness-of-fit on F ²	1.004		
R indices [I>2sigma(I)]	R1 = 0.1575, wR2 = 0.2709		
R indices (all data)	R1 = 0.0957, wR2 = 0.2270		

 Table S4.
 Crystal data and structure refinement for BSF-21

Table S5	Selected	bond	lengths	۲Å۱	for	BSF-21
	Derected	oona	i cing tino		101	

Cu1 N1 2.005(7) Cu1 N1 2.005(7) Cu1 N4 2.021(7) Cu1 N4 2.021(7)

Fig. S1: Partial structures of BSF-2 and BSF-21 highlighting the [B₁₂H₁₁I]²⁻ pillars,

Fig. S2. 2D square layer of BSF-2

III Sorption Isotherms

Site A				Site B			
	q _{A,sat}	b _A (kPa⁻	(R)	$q_{B,sat}$	b _B (kPa⁻	V_B	coefficient
	(mol/kg)	¹)		(mol/kg)	¹)		(R)
C ₃ H ₈	0.6068	2.261514	1.767981	4.48522	0.030769	0.521303	0.999854
C ₂ H ₆	2.286567	0.0264	0.65113	0.409894	0.009136	2.221695	0.999945
CO ₂	2.549627	0.009202	0.009202	0.267835	1.64E-13	7.757769	0.999997
C_2H_2	0.706287	0.04483	1.573618	6.402589	0.01586	0.567392	0.999956
CH ₄	0.596877	0.006052	0.892831	0.109027	2.50E-06	2.942542	0.999925

Table S6. Langmuir-Freundlich parameters fit for C_3H_8 , C_2H_6 , CO_2 , C_2H_2 and CH_4 in BSF-2 at 298 K.

Table S7. Langmuir-Freundlich parameters fit for C_3H_8 , C_2H_6 , CO_2 , C_2H_2 and CH_4 in BSF-2 at 273 K.

		Site A			Site B		correlation
	q _{A,sat}	$b_A(kPa^{-1})$	V _A	q _{A,sat}	b _A (kPa⁻	V _B	coefficient
	(mol/kg)			(mol/kg)	1)		(R)
C_3H_8	2.473521	0.0821769	0.568717	0.66467	7.41494	1.2509	0.999928
C_2H_6	1.807439	0.075599	0.712973	0.341872	0.162207	2.021514	0.999988
CO_2	3.304472	0.019365	0.895212	0.392958	3.74E-06	4.83235	0.999987
C_2H_2	3.366333	0.069638	0.605651	0.593441	0.460599	1.503002	0.999967
~~~	0.001.42	22424.96	1 77(205	c 152205	0.001.422	0.01244	0.00000
$CH_4$	0.00143	32424.86	4.776305	5.153295	0.001432	0.91344	0.9999996

		Site A			Site B		correlation
							coefficient
	q _{A,sat}	b _A (kPa⁻	(R)	Q _{B,sat}	b _A (kPa⁻	$V_B$	(R)
	(mol/kg)	¹ )		(mol/kg)	¹ )		
C ₃ H ₈	158.9548	0.0013	0.768608	0.838101	0.553853	1.353025	0.999934
C ₂ H ₆	1.285557	0.028647	0.96738	0.117193	1.09E-9	7.342207	0.999981
CO ₂	0.201085	9.89E-24	11.97349	2.956146	0.005411	0.945073	0.999991
C ₂ H ₂	2.676052	0.035932	0.786344	0.099039	1.17E-11	9.061228	0.999977
CH ₄	3.71429	3.71E-5	1.42361	0.187903	0.021855	0.753305	0.999935

**Table S8.** Langmuir-Freundlich parameters fit for  $C_3H_8$ ,  $C_2H_6$ ,  $CO_2$ ,  $C_2H_2$  and  $CH_4$  in BSF-2 at 313 K.



Fig. S3. Sorption isotherms of  $C_3H_8$  on BSF-2 at temperature from 273 to 313 K



Fig. S4. Sorption isotherms of  $C_2H_6$  on BSF-2 at temperature from 273 to 313 K.



Fig. S5. Sorption isotherms of  $C_2H_2$  on BSF-2 at temperature from 273 to 313 K



Fig. S6. Sorption isotherms of  $CO_2$  on BSF-2 at temperature from 273 to 313 K.



Fig. S7. Sorption isotherms of CH₄ on BSF-2 at temperature from 273 to 313 K.



Fig. S8. The adsorption and desorption isotherm of  $N_2$  on BSF-2 at 77 K. The calculated BET surface area and Langmuir surface area of BSF-2 by  $N_2$  adsorption isotherm at 77 K is 403.3537 m²/g and 556.8187 m²/g.



Fig. S9 IAST selectivity with different  $CO_2$ , C2 or C3 ratios in the gas mixture of  $C_3H_8/CH_4$ ,  $C_2H_6/CH_4$ ,  $C_2H_2/CH_4$  and  $CO_2/CH_4$ .

![](_page_20_Figure_0.jpeg)

Fig. S10. Isosteric enthalpy of adsorption ( $Q_{st}$ ) of BSF-2 towards  $C_3H_8$ .

![](_page_20_Figure_2.jpeg)

Fig. S11. Isosteric enthalpy of adsorption ( $Q_{st}$ ) of BSF-2 towards  $C_2H_6$ .

![](_page_21_Figure_0.jpeg)

Fig. S12. Isosteric enthalpy of adsorption  $(Q_{st})$  of BSF-2 towards CH₄.

![](_page_21_Figure_2.jpeg)

Fig. S13. Isosteric enthalpy of adsorption ( $Q_{st}$ ) of BSF-2 towards  $C_2H_2$ .

![](_page_22_Figure_0.jpeg)

Fig. S14. Isosteric enthalpy of adsorption ( $Q_{st}$ ) of BSF-2 towards CO₂.

	BSF-1	BSF-2					
Composition	${CuB_{12}H_{12}(bpa)_2}_n$	${CuB_{12}H_{11}I(bpa)_2}_n$					
Space group	C2/c	C2/c					
a (Å)	28.764(2)	28.398(2)					
b (Å)	17.1839(11)	17.7840(12)					
c (Å)	19.918(3)	20.2046(15)					
α	90	90					
β	133.107(2)	133.929(2)					
γ	90	90					
$\rho_{calc}$ (g/cm ³ )	1.046	1.250					
BET surface area (m ² /g)	535	403					
Langmuir surface area (m ² /g)	830	557					
Pore volume (cm ³ /g) ^a	0.25 (0.27)	0.19 (0.20)					
C ₂ H ₂ uptake (cm ³ /cm ³ )	55.0	51.7					
CO ₂ uptake (cm ³ /cm ³ )	41.5	37.2					
C ₃ H ₈ uptake (cm ³ /cm ³ )	45.5	49.5					
C ₂ H ₆ uptake (cm ³ /cm ³ )	36.8	34.1					
CH ₄ uptake $(cm^3/cm^3)$	11.0	6.7					
$C_2H_2 Q_{st} (kJ/mol)$	-30.7	-37.0					
$\operatorname{CO}_2 Q_{\mathrm{st}} (\mathrm{kJ/mol})$	-21.7	-28.7					
$C_3H_8 Q_{st} (kJ/mol)$	-33.7	-39.7					
$C_2H_6 Q_{st} (kJ/mol)$	-28.1	-32.8					
CH ₄ Q _{st} (kJ/mol)	-23.7	-23.5					
[a] values detected by 77 K N ₂ adsorption (values calculated from single crystal							

**Table S9** Summary of crystallographic parameters and gas adsorption data (297 K) of BSF-1 and BSF-2

data)

Table S10. Comparison of reported materials on IAST selectivity towards gas mixtures of  $C_3H_8/CH_4$  and  $C_2H_6/CH_4$ 

Material	Pore	BET	C ₃ H ₈ /CH ₄	C ₂ H ₆ /CH ₄	Ref
name	sizes	surface	IAST	IAST	
(feature)	(Å or	areas	selectivity ^a	selectivity ^a	
	Å2)	$(m^{2}/g)$			
JUC-100	14	2040	80	11	Chem. Eur. J.
					2014, 20, 9073
JUC-103	10	1484	55	8	Chem. Eur. J.
					2014, 20, 9073
JUC-106	8	1122	75	13	Chem. Eur. J.
					2014, 20, 9073
UTSA-35a	7.7 × 5.8	742.7	80	20	Chem. Commun.,
					2012, 48, 6493
UTSA-36a	3.1-4.4			16.6 ^b	Chem. Eur. J.
					2011, 17, 7817
MAF-49	$3.3 \times 3.0$			170	Nat. Commun
				(316K)	2015, 6, 8697
IRMOF-8		1360		8	ACS Appl.
				(316K)	Mater.
					Interfaces 2014,
					6, 12093
Cu-TDPAH		2171		16	J. Mater. Chem. A
(OMS)					2014, 2, 15823
SBMOF-2		145		25	Chem. Mater 2016,
					28, 1636
Fe-MOF-74	11	1350	23 ^b /(18)	5 ^b	Science 2012, 335,
(OMS)					1606
					(Inorg. Chem. 2016,
					55, 3928)
РНА		284		25	J. Mater. Chem. A
(carbon)					2016, 4, 2263
NAHA-1		895		32.6	J. Mater. Chem. A
(carbon)					2016, 4, 2263
NAHA-2		1192		23.9	J. Mater. Chem. A
(carbon)					2016, 4, 2263
NAHA-4		1538		18.4	J. Mater. Chem. A
(carbon)					2016, 4, 2263
Na-ETS-10	8			45 ^e	Chem. Eng. Sci
(zeolite)					2011, 66, 1697
Ba/H-ETS-	~8			15 ^e	Chem. Eng. Sci
10					2011, 66, 1697

(zeolite)					
Ba-ETS-10	~8			32 ^e	Chem. Eng. Sci
(zeolite)					2011, 66, 1697
Ext-MCM-	15-200	470		12	Green Chem. 2011,
41					13, 1251
(mesoporous)					
MCM-41	15-200	1090		6	Green Chem. 2011,
(mesoporous)					13, 1251
Ext-PCH	15-200	470		10	Green Chem. 2011,
(mesoporous)					13, 1251
РСН	15-200	814		5	Green Chem. 2011,
(mesoporous)					13, 1251
Zr-FUM	5/7	735	292		Ind. Eng. Chem.
					Res. 2017, 56, 14633
Zr-1,4-NDC	6/8	876	73.5		Ind. Eng. Chem.
					Res. 2017, 56, 14633
Zr-BDC	8/11	1200	71.5		Ind. Eng. Chem.
					Res. 2017, 56, 14633
Zr-2,6-NDC	11/14	1717	49.2		Ind. Eng. Chem.
					Res. 2017, 56, 14633
Zr-BPDC	12/16	2500	65.0		Ind. Eng. Chem.
					Res. 2017, 56, 14633
UiO-67	10.90/	2590.63	73.7°	8.1 ^d	Ind. Eng. Chem.
	13.58				Res. 2017, 56, 8689.
JXNU-4	9.8 × 9.8	1250	144 ^e (273K)	14.6 ^e	Inorg. Chem. 2017,
					56, 2919
FIR-7a				14.6	Chem. Commun.,
					2013, 49, 11323
FIR-51	7.6 × 7.6	918.6	75	15	Dalton Trans. 2015,
					44, 2893
Mg-MOF-74				11.5	Dalton Trans. 2015,
(OMS)					44, 2893
Co-MOF-74				7.5	Dalton Trans. 2015,
(OMS)					44, 2893
NOTT-101				12	Dalton Trans. 2015,
					44, 2893
JLU-Liu5		707	107.8	17.6	Chem. Commun.
					2014, 50, 8648.
JLU-Liu6		544	274.6	20.4	Chem. Commun.
					2014, 50, 8648.
JLU-Liu18		1300	108.2	13.1	J. Mater. Chem.

					A.2015, 3,16627.
JLU-Liu22	10/13/18	1487	271.5	14.4	Chem. Commun.
(OMS)					2015, 51, 15287.
JLU-Liu34	12	2619	45.9	8.7	Cryst. Growth
					Des. 2017, 17, 2131.
JLU-Liu36	12	2497	40	8	Cryst. Growth
					Des. 2017, 17, 2131.
JLU-Liu37	8.6-11	1795	206	11	Inorg. Chem. 2017,
					56, 4141
JLU-Liu38	8.6-11	1784	98	15	Inorg. Chem. 2017,
					56, 4141.
FIR-7a-ht		1894.1	78.8°	14.6 °	Chem. Commun.
					2013, 49, 11323.
FJI-C1	7/11	1726.3	471	22	ChemSusChem
(anionc					2014, 7, 2647.
MOF)					
FJI-C4	5.9 × 5.9	690	293.4	39.7	ACS Appl. Mater.
(anionc					Interfaces 2016, 8,
MOF)					9777
1-mim	10.2	940.26	200	18	Inorg. Chem. 2016,
			(297K)	(297K)	55, 3928
1-eim	10.2	877.41	80	12	Inorg. Chem. 2016,
			(297K)	(297K)	55, 3928
1-pim	10.2	839.04	75	12	Inorg. Chem. 2016,
			(297K)	(297K)	55, 3928
1-buim	10.2	769.67	50	11	Inorg. Chem. 2016,
			(297K)	(297K)	55, 3928
MFM-202a	9 × 9	2220	87	10	Chem. Mater. 2016,
(Flexible)					28, 2331
tbo-MOF-1	17.8 ×		32 ^e	5 ^e	RSC Adv.
(HKUST-1-	18.3				2014, 4, 63855
like)					
tbo-MOF-2	17.8 ×		60 ^e	14 ^e	RSC Adv.
(HKUST-1-	18.3				2014, 4, 63855
like)					
Zn ₆	14	630	90	20	Cryst. Growth Des.
(2-mbim) ₂			(285K)	(285K)	2014, 14, 6467
InOF-1	7.4	1108.6	90	17	Ind. Eng. Chem.
					Res. 2017, 56, 4488
LIFM	12.1	803	35.8 d	9 ^d	Cryst. Growth Des.
					2017, 17, 1476
BSF-1		535	353	23	Angew. Chem. Int

					Ed. 2019, 58, 8145
BSF-2	4	03 2	2609	53	This work

^a calculated using the ideal adsorption solution theory under the condition of equimolar binary mixtures and 1 bar;

^b gas adsorption selectivity data obtained from Henry's law;

- ^c IAST selectivity calculated using the ideal adsorption solution theory under the condition of C2/C1 or C3/C1 = 5/85 and 1 bar.
- ^d IAST selectivity calculated using the ideal adsorption solution theory under the condition of 1 bar (unspecified molar ratio).
- ^e Calculated using the ideal adsorption solution theory under the condition of C2/C1 or C3/C1 = 0.05/0.95 and 1 bar.

Note: OMS = open metal sites.

![](_page_27_Figure_7.jpeg)

Fig. S15. Stacked Column breakthrough experiments ( $\Phi$  0.46 cm × 5 cm) of C₃H₈/C₂H₆/CH₄ (5/10/85) on BSF-2 at 4.0 mL/min.

![](_page_28_Figure_0.jpeg)

Fig. S16. Stacked Column breakthrough experiments ( $\Phi$  0.46 cm × 5 cm) of C₂H₂/CH₄ (50/50) on BSF-2 (0.2808 g) at 3.5 mL/min.

![](_page_28_Figure_2.jpeg)

Fig. S17. Stacked Column breakthrough experiments ( $\Phi$  0.46 cm × 5 cm) of C₂H₂/CO₂/He (5/10/85) on BSF-2 (0.2808 g) at 3.3 mL/min. This gas mixture compositions simulate the practical relative proportions of C₂H₂ and CO₂ in gas streams for acetylene production. The role of He is to serve as an inert carrier gas.

![](_page_29_Figure_0.jpeg)

**Fig. S18.** Stacked Column breakthrough experiments ( $\Phi$  0.46 cm × 5 cm) of CO₂/CH₄ (15/85) on BSF-2 (0.2808 g) at 3.0 mL/min. This gas mixture compositions simulate the practical relative proportions of CO₂ and CH₄ in natural gas.

Table	<b>S11</b>	Comparision	of the	experimental	$Q_{\rm st}$ (	(in kJ/mol)	on	BSF-2	and	BSF-1
calcula	ited u	sing the Claus	sius-Cla	apeyron equati	on					

Gas molecules	Low coverage (kJ	experimental Q _{st} /mol)	$\Delta Q_{\rm st} = Q_{\rm st} \ (BSF-2)- \ Q_{\rm st} \ (BSF-1)$
	BSF-2	BSF-1	(kJ/mol)
C ₃ H ₈	-39.7	-33.7	-6.0
C ₂ H ₆	-32.8	-28.6	-4.2
CH ₄	-23.5	-23.7	+0.2
$C_2H_2$	-37.3	-30.7	-6.6
CO ₂	-29.3	-21.7	-7.6

![](_page_30_Figure_1.jpeg)

**Fig. S19.** Powder X-ray diffraction (XRD) patterns calculated from crystal X-ray structure data (black) of BSF-2, as-synthesized BSF-2 (red), activated BSF-2 (blue), activated BSF-2 exposed to humid air (~75% humidity) for a week (brown).

![](_page_30_Figure_3.jpeg)

**Fig. S20.** Powder X-ray diffraction (XRD) patterns from activated BSF-2 (blue), BSF-2 after gas sorption (black) and BSF-2 after breakthrough experiments (red).

![](_page_31_Figure_0.jpeg)

**Fig. S21.** Temperature varied powder X-ray diffraction (XRD) patterns. It indicates the decomposition temperature was ~433 K (160 °C).

![](_page_31_Figure_2.jpeg)

Fig. S22. TGA curves of BSF-2

![](_page_32_Figure_0.jpeg)

Fig. S23. IR spectrum of BSF-2

![](_page_32_Figure_2.jpeg)

Figure S24. EPR spectra of BSF-2 and BSF-1.

Analysis: the positions of  $g_{\perp}$  (in the right) and  $g_{\ell}$  (in the left) signals implied the unpaired electron was localized in the  $d_{z2}$  orbital of Cu(II), confirming an octahedral coordiation field with an axial elongation distortion. The  $g_{\perp}$  values are both 2.054 for BSF-2 and BSF-1, consistent with the structures that both materials have four bpa ligands coordinating to the Cu(II) centers in the equatorial positions. The  $g_{\ell}$  value are 2.225 and 2.232 for BSF-2 and BSF-1, respectively, indicating that  $[B_{12}H_{11}I]^{2-}$  is less coordinating to Cu(II) in the axial positions than  $[B_{12}H_{12}]^{2-}$ , which can be explained by the substitution of I-group leading to higher steric hindance and replusion bewteen dodecaborates and the sql network. The corresponding calculated G values are 4.16 and

4.30, suggesting a negligible exchange interaction between Cu(II)-Cu(II) as the distances are more than 10 Å.

## V. DFT Calculation

![](_page_34_Figure_1.jpeg)

Fig. S25. Optimized CH₄ adsorption configuration in BSF-2.

Table	S12 (	Comparison	of DFT	calculated	potential	energies	(in k	J/mol)	for	single
$C_3H_8$ ,	$C_2H_6$ ,	$CH_4$ , $C_2H_2$ a	nd CO ₂	molecules l	ocated in	the optimation	al BS	F-2 and	1 BS	SF-1

Gas	DFT calculated energy E	sorbate-sorbent (k <i>J/mol)</i>	$\Delta E = E(BSF-2) - E(BSF-1)$
molecules	BSF-2	BSF-1	(KJ/mol)
C ₃ H ₈	58.3999	47.048	11.3519
C ₂ H ₂	42.9561	35.7082	7.2479
CH ₄	26.1486	25.4521	0.6965

#### References

- W. H. Knoth, H. C. Miller, J. C. Sauer, J. H. Balthis, Y. T. Chia and E. L. Muetterties, *Inorg Chem.* 1964, 3, 159–167.
- [2] X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong,
   Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, *Science*. 2016, 353, 141–144.
- [3] Y. Chen, Z. Qiao, D. Lv, H. Wu, R. Shi, Q. Xia, H. Wang, J. Zhou, Z. Li, *Ind. Eng. Chem. Res.* 2017, 56, 4488–4495.