Supporting Information

FeP₃ Monolayer as High-Efficiency Catalysts for Hydrogen

Evolution Reaction

Shuang Zheng, Tong Yu, Jianyan Lin, Huan Lou, Haiyang Xu, and Guochun Yang*

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

Index Page	e
1. Computational details ······	2.
2. Electron localization function of the FeP_x monolayers $\cdots $	1
3. The P_2 and P_4 units are alternate arrangement through Fe-P bonding of Fe	P ₃
monolayer	4
4. Relative formation energy of the FeP_x monolayers $\cdots 5$	5
5. Dynamical stability of the FeP_x monolayers \cdots	5
6. Thermal stability of the FeP_x monolayers	6
7. Projected density of states of the FeP_x monolayers	7
8. Hydrogen adsorption and calculated Gibbs free energies at different sites for t	he
FeP _x monolayers	8
9. The structure of the FeP_x monolayer with hydrogen adsorption	9
10. The Gibbs free energies of FeP_x under biaxial strain	14
11. Structural information of predicted FeP_x monolayers	15
12. Bader charge analysis of the FeP_x monolayers \cdots	16
13. References	17

Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm as implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code^{1,2} was employed to find the lowest energy structures of FeP_x (x =1-4) monolayers. Unit cells containing 1, 2, and 4 formula units (f.u.), including buckled and planar structures, were considered. In the first step, random structures with certain symmetry are constructed in which atomic coordinates are generated by the crystallographic symmetry operations. Local optimizations using the VASP code³ were done with the conjugate gradients method and stopped when Gibbs free energy changes became smaller than 1×10^{-6} eV per cell. After processing the first generation structures, 60% of them with lower enthalpies are selected to construct the next generation structures by Particle Swarm Optimization (PSO). 40% of the structures in the new generation are randomly generated. A structure fingerprinting technique of bond characterization matrix is applied to the generated structures, so that identical structures are strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating $1000 \sim 1200$ structures (e.g., about $20 \sim 30$ generations).

The local structural relaxations and electronic properties calculations were performed in the framework of the density functional theory (DFT)⁴ within the generalized gradient approximation (GGA)⁵ as implemented in the VASP code. The $3d^74s^1$, and $3s^23p^3$ atomic orbitals were treated as valence states for Fe, and P respectively. The cut-off energy for the expansion of wavefunctions into plane waves is set to 450 eV in all calculations. Phonon calculations were performed by using a supercell approach with the finite displacement method⁶ as implemented in the Phonopy code.⁷ Dependent on specific structures of stable monolayers, different supercells are used: $3 \times 3 \times 1$ for FeP with *P4/nmm* symmetry, $1 \times 4 \times 1$ for FeP₂ with *C2/m* symmetry, $2 \times 2 \times 1$ for FeP₃ with *C2/m* symmetry, and $3 \times 2 \times 1$ for FeP₄ with *Pm* symmetry. Among the predicted stable structures, the FeP with *P4/nmm*

symmetry is the most stable. First-principles molecular dynamics (MD)⁸ simulations for a large supercell were performed at different temperatures of 500 K. The supercells adopt $5 \times 5 \times 1$ for FeP with *P4/nmm* symmetry, $1 \times 7 \times 1$ for FeP₂ with *C2/m* symmetry, $2 \times 3 \times 1$ for FeP₃ with *C2/m* symmetry, and $4 \times 4 \times 1$ for FeP₄ with *Pm* symmetry. MD simulation in NVT ensemble lasted for 10 ps with a time step of 1.0 fs. The temperature was controlled by using the Nosé-Hoover method.

Cohesive energy

Cohesive energy is widely used to ascertain the feasibility for experimental synthesis of the predicted 2D materials. Here, the cohesive energy E_{coh} is calculated based on the equation of $E_{coh} = (E_{Fe} + x \times E_P - E_{FeP_x})/(x+1)$, where E_{Fe} , E_P , and E_{FeP_x} are the energies of Fe, P atom, and 2D FeP_x unit cell, respectively.

Supporting Figures

Figure. S1 ELF map of the (a) FeP monolayer, (b) FeP_2 monolayer, (c) - (d) FeP_3 monolayer, and (e) - (f) FeP_4 monolayer.

Figure. S2 The P_2 and P_4 units are alternate arrangement through Fe-P bonding of FeP₃ monolayer.

Figure. S3 Relative formation energy of FeP_x monolayers with respect to Fe, P atoms and the Fe₃P monolayer.⁹

Figure. S4 Phonon dispersive curves and projected phonon density of states (PHDOS) of the (a) FeP monolayer, (b) FeP_2 monolayer, (c) FeP_3 monolayer, and (d) FeP_4 monolayer.

Figure. S5 Snapshots of the final frame of (a) FeP, (b) FeP_2 , (c) FeP_3 , and (d) FeP_4 monolayer at time of 10 ps during AIMD simulations under the temperatures of 500 K.

Figure. S6 Snapshots of the final frame of FeP monolayer at time of 10 ps during AIMD simulations under the temperatures of 1000 K.

Figure. S7 Projected density of states (PDOS) for (a) FeP monolayer, (b) FeP_2 monolayer, (c) FeP₃ monolayer, and (d) FeP₄ monolayer.

Figure. S8 Hydrogen adsorption and calculated Gibbs free energies at different sites for the (a) FeP monolayer, (b) FeP₂ monolayer, (c) FeP₃ monolayer, and (d) FeP₄ monolayer. The FeP₂ monolayer destroy when hydrogen adsorption at 2 site.

Figure. S9 Top and side views of the structure of the FeP monolayer with hydrogen adsorption. The different H coverages can be simulated with an increment of 1/9.

Figure. S10 Top and side views of the structure of the FeP_2 monolayer with hydrogen adsorption. The different H coverages can be simulated with an increment of 1/8.

Figure. S11 Top and side views of the structure of the FeP_3 monolayer with hydrogen adsorption. The different H coverages can be simulated with an increment of 1/16.

Figure. S12 Top and side views of the structure of the FeP_4 monolayer with hydrogen adsorption. The different H coverages can be simulated with an increment of 1/9.

Figure. S13 The Gibbs free energies under biaxial strain for FeP (a) $a^{\Delta G_H}$, (b) $d^{\Delta G_H}$; for FeP₂ (c) $a^{\Delta G_H}$, (d) $d^{\Delta G_H}$; for FeP₄ (e) $a^{\Delta G_H}$, (f) $d^{\Delta G_H}$.

Supporting Tables

Phase	Space	Lattice	Wyckoff Positions			
	Group	Parameters	(fractional)			
		(Å, °)	Atoms	x	у	Z
FeP	P4/nmm	<i>a</i> = 3.73020	Fe(2b)	1.00000	0.00000	0.50000
		<i>b</i> = 3.73020	P(2c)	0.50000	0.00000	0.45450
		<i>c</i> = 23.90970				
		$\alpha = \beta = \gamma = 90.000$				
FeP ₂	C2/m	<i>a</i> = 12.13140	Fe(4i)	0.89830	0.50000	0.49280
		<i>b</i> = 2.62750	P(4i)	0.73576	0.50000	0.54650
		<i>c</i> = 22.85930	P(4i)	0.01034	0.00000	0.43575
		$\alpha = \gamma = 90.000$				
		$\beta = 91.5487$				
FeP ₃	C2/m	<i>a</i> = 7.91300	Fe(4f)	0.25000	0.25000	0.50000
		<i>b</i> = 7.52210	P(4i)	0.33197	0.50000	0.54798
		<i>c</i> = 22.69210	P(4i)	0.36340	0.50000	0.45138
		$\alpha = \gamma = 90.000$	P(4h)	0.50000	0.13999	0.50000
		$\beta = 83.340$				
FeP ₄	Pm	<i>a</i> = 3.74680	Fe(1b)	0.34831	0.50000	0.47196
		<i>b</i> = 4.20240	P(1b)	0.83283	0.50000	0.42797
		c = 22.83070	P(1b)	0.86791	0.50000	0.52770
		$\alpha = \gamma = 90.000$	P(1a)	0.88318	0.00000	0.57110
		β = 93.3094	P(1a)	0.36214	0.00000	0.51128

Table S1 Detailed structural information of the predicted stable FeP_x monolayers.

Phase	Atom	Charge
FeP	Fe	0.30
	Р	-0.30
FeP ₂	Fe	0.20
	P1	-0.12
	P2	0.08
FeP ₃	Fe	0.33
	P1	-0.08
	P2	-0.10
	P3	-0.15
FeP ₄	Fe	0.24
	P1	-0.02
	P2	-0.02
	Р3	-0.16
	P4	-0.04

Table S2 Bader charge analysis of the FeP_x monolayers.

References

- 1 Y. Wang, J. Lv, L. Zhu and Y. Ma, *Comput. Phys. Commun.*, 2012, **183**, 2063–2070.
- 2 Y. Wang, J. Lv, L. Zhu and Y. Ma, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2010, **82**, 094116.
- 3 G. Kresse and J. Furthmu, *Phys. Rev. B.*, 1996, **54**, 11169–11186.
- 4 W. KOHN and L. J. SHAM, *Phys. Rev*, 1965, **140**, A1133–A1138.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 6 K. Parlinski, Z. Q. Li and Y. Kawazoe, *Phys. Rev. Lett.*, 1997, 78, 4063–4066.
- A. Togo, F. Oba and I. Tanaka, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2008, **78**, 134106.
- 8 G. J. Martyna, M. L. Klein and M. Tuckerman, J. Chem. Phys., 1992, 97, 2635–2643.
- 9 S. Zheng, C. Huang, T. Yu, M. Xu, S. Zhang, H. Xu, Y. Liu, E. Kan, Y. Wang and G. Yang, *J. Phys. Chem. Lett.*, 2019, **10**, 2733–2738.