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Figure S1. Cross-section view SEM image of the prepared ANM, revealing highly ordered

structure of straight channels.
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Figure S2. I-V curves of the ANM in aqueous and PVA gel electrolytes under 500 mM/0.1

mM KCI gradient.
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Figure S3. (a) Short-circuit current /. and (b) open-circuit voltage V. generated by the ANM

placed in contact with aqueous and PV A gel electrolytes as a function of KCI gradient. A lower

concentration of KCl was kept at 0.1 mM as reported in Fig. 2a of the main text.
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Figure S4. Schematic illustration of the experimental set-up for the osmotic power generation.

The power generated can be transferred to the external circuit containing a tunable resistor.
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Figure S5. Comparison of the current generation in aqueous solution with that in PVA gel
solution in a 100 mM/0.1 mM KCI gradient. This is the same ANM as shown in Fig. 2 of the

main text.
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Figure S6. Osmotic power generation in aqueous and PVA gel electrolytes as a function of

KCI gradient. Here a lower concentration of KCI was kept at 0.1 mM as reported in Fig. 2¢ of

the main text.
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Figure S7. Osmotic current density and power density generated in the PVA gel subjected to
a 100 mM/0.1 mM KCl gradient. The maximum power density generated is ~0.624 W/m?. The

result was extracted from another independently prepared ANM.
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Figure S8. Current density-time curve of the PVA-gel electrolyte system in a 100 mM/0.1 mM

KCl gradient, exhibiting ~1.9 % decrease in an hour for the case of no electrolyte replenishing.
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Numerical Simulation
In the model, we considered the two nanochannel systems (Fig. 4), connected by two large,
identical reservoirs. The energy harvesting from a salinity gradient for the systems considered

in the main text can be described by the modified Poisson and Nernst-Planck equations:!
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In the above, ¢ is the electric potential; & is the fluid permittivity; /', R, and T are the
Faraday constant, gas constant, and absolute temperature, respectively. C,, D,, J,, and z, are
the concentration, diffusivity, flux, and valence of the i" ionic species, respectively (i =1 for
K" cations and i =2 for C1"). The charged PVA in the channel is modeled as a polyelectrolyte
(PE) layer, which is ion-penetrable and homogeneously structured with a fixed space charge
density of p,, . In the model of the solid-nanochannel system (Fig. 4a in the main text), we let
® =0. Otherwise, in the model of the PE-filled nanochannel (Fig. 4b), we let ® =1 (® =0)
for the region inside (outside) the PE layer. The radial-axial domain (7,z) is considered to
simulate the cylinder-shaped structure of the ANM used. The detailed boundary conditions
required can be found in our previous publications.!-2

The current-voltage curves for the systems considered in Fig. 4 are solved numerically based

on the above-mentioned model performed by COMSOL Multiphysics 4.3a operated on a high-
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performance cluster. The ionic current through the channel can be calculated by

2
_[(Z FzJ,)-ndS, (S3)
s =l

where n is unit normal vector and S denotes either end of two reservoirs.
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