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Figure S1. Cross-section view SEM image of the prepared ANM, revealing highly ordered 

structure of straight channels. 
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Figure S2. I-V curves of the ANM in aqueous and PVA gel electrolytes under 500 mM/0.1 

mM KCl gradient. 
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Figure S3. (a) Short-circuit current  and (b) open-circuit voltage  generated by the ANM SCI OCV

placed in contact with aqueous and PVA gel electrolytes as a function of KCl gradient. A lower 

concentration of KCl was kept at 0.1 mM as reported in Fig. 2a of the main text.
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Figure S4. Schematic illustration of the experimental set-up for the osmotic power generation. 

The power generated can be transferred to the external circuit containing a tunable resistor. 
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Figure S5. Comparison of the current generation in aqueous solution with that in PVA gel 

solution in a 100 mM/0.1 mM KCl gradient. This is the same ANM as shown in Fig. 2 of the 

main text. 
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Figure S6. Osmotic power generation in aqueous and PVA gel electrolytes as a function of 

KCl gradient. Here a lower concentration of KCl was kept at 0.1 mM as reported in Fig. 2c of 

the main text. 
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Figure S7. Osmotic current density and power density generated in the PVA gel subjected to 

a 100 mM/0.1 mM KCl gradient. The maximum power density generated is ~0.624 W/m2. The 

result was extracted from another independently prepared ANM. 
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Figure S8. Current density-time curve of the PVA-gel electrolyte system in a 100 mM/0.1 mM 

KCl gradient, exhibiting ~1.9 % decrease in an hour for the case of no electrolyte replenishing. 
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Numerical Simulation

   In the model, we considered the two nanochannel systems (Fig. 4), connected by two large, 

identical reservoirs. The energy harvesting from a salinity gradient for the systems considered 

in the main text can be described by the modified Poisson and Nernst-Planck equations:1 
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In the above,  is the electric potential;  is the fluid permittivity; , , and  are the  f F R T

Faraday constant, gas constant, and absolute temperature, respectively. , , , and  are iC iD iJ iz

the concentration, diffusivity, flux, and valence of the  ionic species, respectively (  for thi 1i 

 cations and  for ). The charged PVA in the channel is modeled as a polyelectrolyte K 2i  Cl

(PE) layer, which is ion-penetrable and homogeneously structured with a fixed space charge 

density of . In the model of the solid-nanochannel system (Fig. 4a in the main text), we let PE

. Otherwise, in the model of the PE-filled nanochannel (Fig. 4b), we let  ( ) 0  1  0 

for the region inside (outside) the PE layer. The radial-axial domain (r,z) is considered to 

simulate the cylinder-shaped structure of the ANM used. The detailed boundary conditions 

required can be found in our previous publications.1, 2 

   The current-voltage curves for the systems considered in Fig. 4 are solved numerically based 

on the above-mentioned model performed by COMSOL Multiphysics 4.3a operated on a high-

S8



performance cluster. The ionic current through the channel can be calculated by 
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where n is unit normal vector and  denotes either end of two reservoirs. S
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