Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

for

Activated Basal Plane of WS₂ by Intrinsic Defects as a Catalyst for Electrocatalytic Nitrogen Reduction Reaction

X. Yao, Z. W. Chen, Y. R. Wang, X. Y. Lang, W. Gao, Y. F. Zhu* and Q. Jiang*

Key Laboratory of Automobile Materials, Ministry of Education (Jilin University),

School of Materials Science and Engineering, Jilin University, Changchun 130022,

China

^{*} Corresponding authors: Y. F. Zhu; Q. Jiang. Fax: 86-431-85095876.

E-mails: yfzhu@jlu.edu.cn; jiangq@jlu.edu.cn

Computational details of formation energies

Our calculations give that $E_{S(single)} = -397.990901$ Ha, $E_{W(single)} = -137.310857$ Ha, and $E_{m-WS_2} = -933.7120494$ Ha. According to the relationship that $E_{Bond} = (E_{m-WS_2} - E_{W(single)} - 2E_{S(single)})/3$, it gives $E_{Bond} = -0.1397968$ Ha, and then $E_{S0} = -398.1306978$ Ha and $E_{W0} = -137.4506538$ Ha. Moreover, the E_{defect} values have been calculated to be -14678.5807089 Ha for W_S, -14280.4258873 Ha for W_{S2}, -14541.2188587 Ha for V_S, and -14143.0592056 Ha for V_{S2}. Based on the equation that $E_f = E_{defect} - N_S \times E_{S0} - N_W \times E_{W0}$, it has $E_f = 0.1320375$, 0.1561613, 0.0432339 and 0.0721892 Ha for W_S, W_{S2}, V_S and V_{S2}, respectively. Namely, $E_f = 3.59$ eV for W_S, 4.25 eV for W_{S2}, 1.18 eV for V_S, and 1.96 eV for V_{S2}.

Fig. S1 The optimized structures of N_2 adsorbed on (a) V_S and (b) V_{S2} , including the nearest distances between any N atom and any exposed W atom.

Fig. S2 Schematic illustration of the distal, alternating, and enzymatic mechanisms for the reduction of N_2 to NH_3 .

Fig. S3 Free energy profile and the corresponding geometric structures of intermediate states of NRR on W_{S2} at an applied potential of 0 V for the distal mechanism.

Fig. S4 Free energy profile and the corresponding geometric structures of intermediate states of NRR on W_{S2} at an applied potential of 0 V for the alternating mechanism.

Fig. S5 Free energy profile and the corresponding geometric structures of intermediate

states of NRR on W_{S2} at an applied potential of 0 V for the enzymatic mechanism.^{*a*}

^{*a*} The adsorption of side-on adsorbed N₂ on W_{S2} ($E_{ad} = -0.39 \text{ eV}$) is weaker than that of H atom ($E_{ad} = -0.50 \text{ eV}$), suggesting that the enzymatic mechanism is significantly difficult to be present for NRR on W_{S2}.

Fig. S6 The top (the upper) and side views (the lower) of (a) W_4S_6 cluster and (b) W_4S_4

cluster. a

^{*a*} To model the coordination environment of active W_0 atom in W_S , a tetrahedron containing as least four W atoms is required. According to the literatures,^{1, 2} W_4S_6 is the most stable one among W_4S_x clusters with x = 1-12. Considering that active W atom only form bonds with W atoms while other W atoms should be bonded to as many S atoms as possible, S_1 , S_2 , and S_3 atoms in W_4S_6 are removed and S_7 atom is added to fabricate W_4S_4 cluster. In addition, the active W atom (W_a) of W_4S_4 is positive with the charge of 0.28, similar to the active W_0 atom (0.29) of W_S .

References

- 1. P. Murugan, V. Kumar, Y. Kawazoe and N. Ota, J. Phys. Chem. A, 2007, **111**, 2778-2782.
- 2. N. Bertram, Y. D. Kim, G. Ganteför, Q. Sun, P. Jena, J. Tamuliene and G. Seifert, *Chem. Phys. Lett.*, 2004, **396**, 341-345.