## Supporting Information

## Metallic State Two-dimensional Holey-Structured Co<sub>3</sub>FeN Nanosheets as Stable and Bifunctional Electrocatalysts for Zinc-Air Batteries

Hai-Peng Guo, Xuan-Wen Gao, Neng-Fei Yu, Zhi Zheng, Wen-Bin Luo\*, Chang Wu, Hua-Kun Liu, Jia-Zhao Wang\*

H. P. Guo, Dr. N. F. Yu, Z. Zheng, C. Wu, Prof. H. K. Liu, Prof. J. Z. Wang Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, Fairy Meadow, NSW 2500, Australia E-mail: wl368@uowmail.edu.au; jiazhao@uow.edu.au

A/Prof. X. W. Gao, Prof. W. B. Luo School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China. E-mail:luowenbin@smm.neu.edu.cn

Dr. N. F. Yu College of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211800, China

**Keywords:** two dimensional, nitride electrocatalyst, oxygen evolution reaction, oxygen reduction reaction, zinc-air battery



Figure S1. (a) SEM image of  $Co_3Fe$  LDH nanosheets. (b) low- and (c) high-magnification TEM images of  $Co_3Fe$  LDH nanosheets.



Figure S2. (a) XRD patterns of  $Co_3FeN$ ,  $Co_3Fe$  oxide, and  $Co_3Fe$  LDH, (b) comparison of the XRD patterns of  $Co_3FeN$  and  $Co_3N$ , (c) comparison of the XRD patterns of  $Co_3Fe$  oxide and CoO.



**Figure S3**. HRTEM images of the 2D holey wrinkled (a, b) Co<sub>3</sub>Fe oxide nanosheets; (c, d) Co<sub>3</sub>FeN nanosheets.



Figure S4. STEM images of 2D holey wrinkled Co<sub>3</sub>FeN nanosheets.



Figure S5. Energy distribution for different structures of (a) Co<sub>3</sub>FeN and (b) Co<sub>3</sub>Fe oxide.



Figure S6. Structure (a) and calculated density of states (b) for Co<sub>3</sub>Fe oxide nanosheets.



Figure S7. Brunauer-Emmett-Teller (BET) of Co<sub>3</sub>FeN, Co<sub>3</sub>Fe oxide and Co<sub>3</sub>Fe LDH.



**Figure S8**. ORR polarization plots for 2D holey wrinkled Co<sub>3</sub>FeN nanosheets at various speeds of rotation, the inset shows the K-L plots at different potentials.



**Figure S9**. (a) Current-time chronoamperometric responses of  $RuO_2$  and different samples for OER at 1.7 V versus RHE; (b) Current-time chronoamperometric responses of Pt/C and different samples for ORR at 0.75 V versus RHE, in 0.1 M KOH, at a rotation speed of 1600 rpm.



**Figure S10.** Typical cyclic voltammetry curves of (a)  $Co_3FeN$ , (b)  $Co_3Fe$  oxide, and (c)  $Co_3Fe$  LDH in 0.1M KOH with different scan rates.



**Figure S11.** Photograph of the zinc-air battery with 2D holey wrinkled Co<sub>3</sub>FeN, Co<sub>3</sub>Fe oxide and Co<sub>3</sub>Fe LDH as the air electrode catalyst, showing an open-circuit potential.



**Figure S12**. Specific capacities for zinc-air battery with different samples normalized to the consumed mass of Zn at current density of 5 mA cm<sup>-2</sup>.



**Figure S13.** HR-TEM images of the 2D holey wrinkled (a, b) Co<sub>3</sub>Fe LDH; (c-d) Co<sub>3</sub>Fe oxide; (e, f) Co<sub>3</sub>FeN nanosheets after cycling.



**Figure S14**. XRD of (a) 2D holey wrinkled Co<sub>3</sub>FeN nanosheets and (b) Co<sub>3</sub>Fe oxide before and after cycling.

 Table S1. Comparison of the OER, ORR, and Zn-air batteries performance with other
 electrocatalysts.

| Materials                                                   | OER activity                          | ORR activity                               | Zn-air batteries<br>performance                                               | Cycling performance                                                     | References |
|-------------------------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|
| 2D holey wrinkled<br>Co <sub>3</sub> FeN nanosheets         | Overpotential: 0.42 V<br>@ 0.1 M KOH  | Onset potential : 0.89<br>V @ 0.1 M KOH    | 0.90 V and decreased to<br>0.83 V after 83 hours @<br>j=5 mA cm <sup>-2</sup> | 150 hours (900 cycles)<br>Specific capacity: 890 mA h g <sup>-1</sup>   |            |
| 2D holey wrinkled<br>Co <sub>3</sub> Fe oxide<br>nanosheets | Overpotential:0.52 V<br>@ 0.1 M KOH   | Onset potential :0.81<br>V @ 0.1 M KOH     | 0.96 V @ j=5 mA cm <sup>-2</sup>                                              | 100 hours (600 cycles)<br>Specific capacity: 836 mA h g <sup>-1</sup>   | This work  |
| 2D wrinkled Co <sub>3</sub> Fe<br>LDH nanosheets            | Overpotential:0.58 V<br>@ 0.1 M KOH   | Onset potential :0.82<br>V @ 0.1 M KOH     | 1.17 V @ j=5 mA cm <sup>-2</sup>                                              | 47 hours (280 cycles)<br>Specific capacity: 798 mA h g <sup>-1</sup>    |            |
| Co <sub>3</sub> O <sub>4</sub> nanosheets@N-<br>rGO         | Overpotential: 0.49 V<br>@ 0.1 M KOH  | Onset potential : 0.90<br>V @ 0.1 M KOH    | 0.80 V @ j=3 mA cm <sup>-2</sup>                                              | 25 hours (75 cycles)<br>Specific capacity: 550 mA h g <sup>-1</sup>     | [1]        |
| N-doped $Co_3O_4$                                           | ~                                     | Onset potential : 0.94<br>V @ 1 M KOH      | 0.30 V @ j=12.5 mA<br>cm <sup>-2</sup>                                        | 28 hours (21 cycles)<br>Specific capacity: 603.7 mA h g <sup>-1</sup>   | [2]        |
| NCNT/Co <sub>x</sub> Mn <sub>1-x</sub> O                    | Overpotential: 0.34 V<br>@ 1M KOH     | Onset potential : 0.96<br>V @ 1 M KOH      | 1.18 V @ j=7 mA cm <sup>-2</sup>                                              | 12 hours<br>Specific capacity: 581 mA h g <sup>-1</sup>                 | [3]        |
| Ni3FeN microspheres                                         | Overpotential: 0.355<br>V @ 0.1 M KOH | Half-wave potential:<br>0.78 V @ 0.1 M KOH | 0.7 V @ j=10 mA cm <sup>-2</sup>                                              | 100 hours (310 cycles)                                                  | [4]        |
| FeNi3N/N-doped<br>Graphene                                  | Overpotential: 0.41 V<br>@ 0.1 M KOH  | Onset potential : 0.88<br>V @ 0.1 M KOH    | 0.78 V @ j=10 mA cm <sup>-2</sup>                                             | 140 hours (840 cycles)<br>Specific capacity: 785.2 mA h g <sup>-1</sup> | [5]        |
| MnO/Co/PGC                                                  | Overpotential: 0.307<br>V @ 1 M KOH   | Onset potential : 0.95<br>V @ 0.1 M KOH    | ~0.75 V @ j=10 mA cm <sup>-</sup>                                             | 350 cycles<br>Specific capacity: 873 mA h g <sup>-1</sup>               | [6]        |

| Meso/micro-FeCo-N <sub>x</sub> -     | Overpotential: 0.37 V | Onset potential :<br>0 954 V @ 0 1 M | $0.75 V @ i=5 mA cm^{-2}$         | 44 hours (22 cycles)                        | [7] |
|--------------------------------------|-----------------------|--------------------------------------|-----------------------------------|---------------------------------------------|-----|
| CN                                   | @ 1 M KOH             | КОН                                  | 0.707 (G) 0 mil 0m                | , ,                                         | [·] |
| Co <sub>9</sub> S <sub>8</sub> @NSCM | Overpotential: 0.37 V | Onset potential : 0.97               | 0.81 V @ j=10 mA cm <sup>-2</sup> | 140 hours (840 cycles)                      | [8] |
|                                      | @ 0.1 M KOH           | V @ 0.1 M KOH                        |                                   | Specific capacity: 810 mA h g <sup>-1</sup> |     |
| CaMnO <sub>3</sub> Nanotubes         | Overpotential: 0.47 V | Onset potential :                    |                                   |                                             |     |
|                                      |                       | 0.915 V @ 0.1 M                      | 0.68 V @ j=10 mA cm <sup>-2</sup> | ~ 13 hours (120 cycles)                     | [9] |
|                                      | @ 0.1 M KOII          | КОН                                  |                                   |                                             |     |

## Supplementary References:

- Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, Adv. Mater., 2018, 30, 1703657.
- 2. *M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu and S. Yang, Adv. Mater., 2017, 29, 1602868.*
- *X. Liu, M. Park, M. G. Kim, S. Gupta, X. Wang, G. Wu and J. Cho, Nano Energy,* 2016, 20, 315-325.
- G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang and J. B. Goodenough, Nano Energy, 2017, 39, 77-85.
- 5. L. Liu, F. Yan, K. Li, C. Zhu, Y. Xie, X. Zhang and Y. Chen, J. Mater. Chem. A, 2019, 7, 1083-1091.
- 6. X. F. Lu, Y. Chen, S. Wang, S. Gao and X. W. Lou, Adv. Mater., 2019, 31, 1902339.
- 7. S. Li, C. Cheng, X. Zhao, J. Schmidt and A. Thomas, Angew. Chem., Int. Ed., 2018, 57, 1856-1862.
- 8. Y. Li, W. Zhou, J. Dong, Y. Luo, P. An, J. Liu, X. Wu, G. Xu, H. Zhang and J. Zhang, Nanoscale, 2018, 10, 2649-2657.
- 9. S. Peng, X. Han, L. Li, S. Chou, D. Ji, H. Huang, Y. Du, J. Liu and S. Ramakrishna, Adv. Energy Mater., 2018, 8, 1800612.