Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions

Chunlin Zhao¹, Junlin Yang², Yanli Huang¹, Xihong Hao^{2,*} and Jiagang Wu^{1,*}

¹Department of Materials Science, Sichuan University, Chengdu, 610064, China

²School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China

*Corresponding author. Email: msewujg@scu.edu.cn and wujiagang0208@163.com (J. G. Wu); xhhao@imust.edu.cn (X. H. Hao)

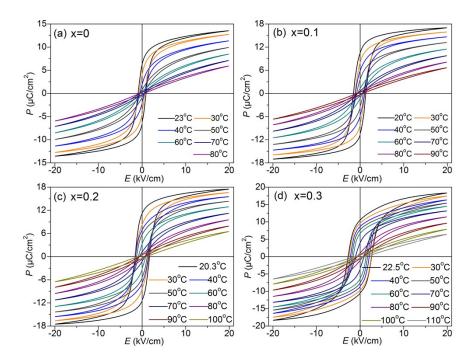


Fig. S1 Temperature-dependent ferroelectric hysteresis (*P-E*) loops with (a) x=0, (b) x=0.1, (c) x=0.2, and (d) x=0.3 measured at 1 Hz from room temperature to 80-110°C.

Fig. S2 Temperature-dependent polarization evolution (extracted from the maximum polarization in each P-E loops) under different electric field for the samples with (a) x=0, (b) x=0.2, and (c) x=0.3. The polarization at 0 kV/cm was obtained from the average value of remnant polarization in each P-E loops under various electric fields.