Supporting Information for

The Stability and Reaction Mechanism of LiF/Electrolyte Interface: Insight from Density Functional Theory

Bingkai Zhang,^{a, b} Zhan Lin, ^{*,a} Haibiao Chen,^b Lin-Wang Wang,^{*, c} and Feng Pan^{*, b}

^aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^b School of Advanced Materials, Peking University, Shenzhen, China.

^c Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
United States.

Figure S1. Li–P distance as a function of time for trajectories that are initially dissociated or associated. The simulation system consisted of 20 EC molecules, 20 DMC molecules, and 8 LiPF₆ with a density of 1.21 g/cc and a concentration of 1.0 M. After a 60 ps NVT simulation (T = 400 K), two in eight LiPF₆ are dissociated.

Figure S2. Optimized structure of EC, DMC and PF–6, before and after reduction, together with the calculated electron affinity energies.

Figure S3. Optimized structures of $(Li^+ : n \text{ solvent})$ solvation shell.

Figure S4. Optimized structures of (Li⁺:n solvent) solvation shells after one electron reduction reaction. The gained electron is mainly distributed on the solvent highlighted with dotted circle.

Figure S5. Calculated electron affinity energy of $(Li^+:n \text{ solvent})$ $(n = 1 \sim 4)$ solvation.

Figure S6. Side view of Li-ion trajectory density $(1 \times 10^{-3} \text{ Å}^{-3} \text{ isosurface level})$ obtained by NVT AIMD simulation at 500 K. (a) LE, (b-d) three kinds of different LiF/LE interfaces.

Figure S7. The site displacement function (SDF) for EC and DMC motion (by tracking C atoms) from NVT AIMD simulation at 800 K in LE (solid lines) and LiF/LE interface (dash lines).